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Abstract

Natural terrains composed of sands, soils, and other types of granular materi-

als are subject to deformation and alteration when influenced by interactions with

humans and machines. These interactions include excavation and earthmoving

activities such as digging, pushing, lifting, dumping, and piling. Simulating the

deformation of sand and soil-filled terrains in interactive computer graphics appli-

cations is challenging due to the fine-grained and highly dynamic nature of these

materials. In this thesis, we present the theoretical background, algorithms, and

implementation details for a voxel-based terrain rendering system that simulates

large, dynamic bodies of sands and soils in real-time 3D graphics applications. We

describe a technique for representing soil in a 3D voxel grid, and we introduce a

set of GPU-based algorithms that simulate the physical behaviors of soils in this

representation. A multi-level heightfield is used to track the slopes of the soil-

covered surfaces for slope stability analysis and soil slippage computations. The

surfaces of the simulated soils are visualized each frame by extracting a polygonal

mesh from the voxel grid with the Marching Cubes and Transvoxel algorithms. We

show that our proposed algorithm is capable of producing realistic, high-quality

simulations of soils with 3D effects that are not possible in previous approaches.

We also show that our proposed system is capable of operating in real-time on

consumer level GPUs with over 60 frames rendered per second.
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1 Introduction

Terrain rendering is the area of computer graphics concerned with the effi-

cient and high-quality rendering of virtual landscapes in three-dimensional envi-

ronments. The majority of previous research on terrain rendering has focused on

the development of rendering techniques for static terrain landscapes in computer

games, video games, virtual reality systems, and simulation systems. A robust,

efficient, and high-quality terrain rendering system is desired in these types of

applications to facilitate the modeling and visualization of large, expansive land-

scapes in virtual environments with outdoor settings. These virtual landscapes

are typically composed of Earth-like terrain features such as plains, hills, moun-

tains, valleys, canyons, tunnels, and caves. Because the shape, arrangement, and

position of these types of surface features are, for the most part, fixed in natural

terrains, most real-time terrain rendering systems assume the surfaces of virtual

terrains will not change throughout the duration of the game, simulation, or ani-

mation. That is, in most real-time computer graphics applications, virtual terrain

surfaces are not deformed based on the actions of the user, who is also referred to

as the player, or based on collisions and interactions that occur between dynamic

objects and the surface of the terrain.

Natural terrains composed of soft, granular materials, such as sand, soil, dirt,

and mud, are highly prone to deformation and displacement due to the granu-

larity of the material. These deformations typically result from interactions with

humans, animals, machines, and other rigid bodies. For example, footprints are

left in the sand after someone walks along a beach and tire tracks are created in

dirt after it is driven over by a vehicle or a large machine. As well, mounds of

1



soil can be dug out of the ground and displaced in the environment with a shovel

or, on a slightly larger scale, heavy construction machinery, such as excavators,

bulldozers, and front-end loaders.

In the past, real-time terrain rendering systems neglected to model the de-

formability of natural terrains composed of soft, granular materials for efficiency

and simplicity reasons. However, with the increasing power of modern graphics

processing units (GPUs) and the introduction of general-purpose GPU (GPGPU )

computing architectures, we can devise and develop efficient, GPU-based terrain

rendering techniques that simulate these types of deformations on virtual terrain

landscapes in real-time computer graphics applications. Such methods could allow

for the design of new, terrain-oriented gameplay features in video games. They

also create opportunities and applications for virtual reality and simulation sys-

tems that provide virtual landscapes that can be manipulated, excavated, and

deformed based on the actions of the player.

1.1 Research Goal

The research that is presented in this thesis is oriented towards the development

of a real-time terrain rendering and animation system that accurately models the

behavior, granularity, and deformability of sand and soil-filled landscapes in the

real world. More specifically, it is the primary goal of this research to develop

an efficient and realistic graphical simulation of the excavation and deformation

of natural landscapes in a virtual, 3D game environment. For this research to

achieve its desired level of realism in its simulation, the surfaces of the soil-filled

landscapes in the simulation should react and deform naturally when excavation
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and alteration activities are performed by the player at arbitrary locations on the

surface of the terrain. Additionally, it should be possible for the player to dig

mounds of the virtual soil out of the ground and pile them up at another arbitrary

location in the environment. In particular, each of these activities should be

able to be performed by the player by controlling the movement and actions of

dynamic game objects that are capable of influencing the state of the virtual soil.

As an example, the player could be given control of a simulated excavation or

earthmoving machine, and with the controls of this machine, the player should

be able to excavate, displace, and pile quantities of the virtual soil at arbitrary

locations in the virtual environment.

Because soil-covered slopes are subject to slope instability and slope failure

[6, 9, 31], the developed terrain rendering and animation system should also be

capable of simulating the natural displacement of sliding soil where the slope of

the soil is unstable. Unstable slopes of soil are created as a result of many different

factors, including soil mass displacements, lateral pressure, and weathering [6, 9,

31]. In our research, unstable slopes are created on the surfaces of simulated

soils as a result of the displacement of soil masses from player-induced forces.

In other words, the steep, unstable slopes that are created, by the player, on

the surfaces of the virtual soils should cause the unstable soil to slide, or slip,

naturally based on the stress that the soil experiences. This stress is influenced

by the weight of the sliding soil mass and the angle of its supporting slope. The

unstable configurations of soil in the system should cause the soil on the surface

to undergo displacement due to slippage until the complete soil system is resolved

into a state of equilibrium. In this thesis, we refer to the displacement of sliding

soil due to slope failure as soil slippage. Soil slippage has also been referred to as
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soil erosion [18, 32, 38]. To achieve a realistic and physically accurate simulation of

the soil slippage phenomenon, the tendency of the virtual soil to slip and the rate

at which it slides should be based on the cohesion, internal friction, and weight

properties of the soil being simulated [2, 34]. These properties depend on the

masses of the rock and dirt particles that compose the various types of soils, as well

as their tendency to interlock with one another when undergoing displacement.

Approximate values for these properties have been determined experimentally for

various types of natural soils and granular materials. The developed soil simulation

system should be parameterized on these values to produce believable simulations

of various types of soils.

Additionally, the terrain rendering and animation system should also be ca-

pable of operating in real-time such that it would be suited for deployment in

real-time applications such as computer games, video games, virtual reality sys-

tems, and simulation systems. To meet this requirement, the system should be

capable of operating with a frame rate of at least 60 frames rendered per second.

That is, the combined time to animate and render the state of the virtual soil

in the system should be less than 1/60th of a second, or 16.67 milliseconds. The

terrain rendering and animation system should also be robust and scalable, such

that the granularity of the simulation can be increased or decreased in order to

find a desired balance between quality and performance on different computers

with various consumer level GPUs.

The complete set of goals which drive this research are summarized below for

quick reference.

1. A dynamic terrain rendering system should be developed that produces re-
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alistic renderings and simulations of sand and soil-filled landscapes in a real-

time computer graphics application.

2. The system should be capable of simulating several types of soils with varying

cohesion, friction, and weight properties.

3. Player-controlled objects should be capable of excavating and deforming the

simulated soil in a manner that is as physically realistic as done in previous

approaches.

4. Unstable slopes on the surfaces of soils should cause the soil to slide in a

physically accurate manner based on the type of soil that is being simulated.

5. The system should be robust and scalable, such that it is capable of running

efficiently on computers with various consumer level GPUs.

6. The system should operate in real-time with a minimum frame rate of 60

frames rendered per second.

1.2 Motivation

Simulations of deformable, soil-filled landscapes are required in real-time com-

puter graphics applications that provide the player with earthmoving and excava-

tion capabilities. As an example, computer-based training simulators are used in

the construction and mining industries to provide training for operators of heavy

machinery, such as bulldozers, front-end loaders, and excavators [29]. A screenshot

from one of these training simulators is shown in Figure 1 [21]. In this simula-

tor, the player is able to control the actions of an excavator that is capable of

digging, removing, and displacing virtual soil in a three-dimensional environment.
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Computer-based training simulators are becoming more common because they are

a safe, low-cost, and risk-free method of training [29]. It is also more efficient for

companies to perform training operations with simulators because they can be

used at any time throughout the day with no operating costs, emissions, or risk of

damaging the equipment or environment. Also, multiple trainees can be trained at

the same time without having to occupy or restrict the use of valuable machinery.

Figure 1: Excavator simulator
(Taken from John Deere [21])

Because computer-based training simulators share many commonalities with

modern computer and video games, a shift is being made towards developing

training simulators with tools from the video game industry. These game-based

simulators are less expensive, easier to use, easier to develop, and easier to modify.

Game-based simulators have been categorized in the games industry as one type

of serious game, where a serious game is any type of game that is developed for a

serious purpose [30]. Serious games include games developed for the purposes of

learning and training, but not games that are developed purely for entertainment.

Serious games are quickly becoming a common form of training for high-stake
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jobs in the construction and mining industries because games have proven to be

an efficient and effective medium for learning [35], and they offer an inexpensive,

fun, and risk-free method of training.

The primary motivation of the research described in this thesis is to enable the

creation of more realistic simulations of soils in game-based training systems for

the construction and mining industries. While interactive simulations of soil-filled

landscapes have already been developed in previous training simulators [7, 21], the

landscapes in these simulators are modeled using two-dimensional, height-based

terrain rendering techniques. These two-dimensional techniques do not provide

an adequate simulation of the characteristics and behaviors of loose soils in the

real world. Unrealistic or unbelievable simulations of soil in a training simulator

environment are hypothesized to reduce the effectiveness of training by disengaging

the player from the virtual experience. Furthermore, an unrealistic simulation of

soil is undesirable because the resulting simulation does not provide the player

with an accurate portrayal of the behaviors of soils during excavation processes in

the real world.

Overall, our research is focused on developing an interactive, voxel-based ter-

rain rendering and animation system that models loose, poured, and piled quan-

tities of soil in a single, three-dimensional data structure. Since a voxel-based ap-

proach is three-dimensional, the resulting simulation of soil will not be restricted

by many of the limitations that are inherent in two-dimensional terrain-rendering

techniques. We discuss these limitations in more detail in Chapter 2.
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1.3 Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we review background research relevant to the primary contri-

butions of this thesis. This chapter includes a review of the most noteworthy

algorithms and techniques used to model and simulate soil in the computer graph-

ics field. This chapter also provides a review of voxel-based terrain-rendering and

fluid-simulation techniques which, as explained in Chapter 3, are the foundations

of our voxel-based simulation of soil.

In Chapter 3, we introduce a new, practical, voxel-based algorithm for sim-

ulating sands and soils in real-time on the GPU. This chapter gives an in-depth

overview and explanation of the theory, algorithms, and implementation details

involved in our proposed approach.

In Chapter 4, we present visual and experimental results that demonstrate the

novelty, performance, and scalability of our soil simulator. We provide a discussion

of these results, where we comment on the practicality and deployability of our

simulator in the games and simulation industries.

Lastly, in Chapter 5, we present our final comments and conclusions, and we

identify the contributions of our research. We also discuss work that could be

performed in the future to continue the development of this research.
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2 Background

In this chapter we provide an overview and a discussion of the background

research related to the primary contributions of this thesis. We devote a section

to each of the following: virtual soil, voxel-based terrain rendering, and voxel-based

fluid simulation.

2.1 Virtual Soil

In this section, we provide an overview of existing techniques and algorithms

that are suited to representing and modeling quantities of virtual soil in computer

graphics applications. In the first subsection, we describe data structures that have

been used to represent the state and topology of virtual soils in three-dimensional

environments. We also discuss methods for simulating the deformation of soils in

these virtual representations based on physical interactions. In the second sub-

section, we review algorithms for simulating the soil slippage behaviors of natural

soils. More specifically, in the second subsection we review a method for analyzing

the stability of a soil-covered slope and an algorithm for simulating the slippage

of soil along an unstable slope in a discrete representation.

2.1.1 Modeling Soil

The topologies of natural terrain landscapes are typically described according

to the various features that are visible on their surfaces. Examples of these surface

features include plains, mounds, hills, mountains, ditches, valleys, and canyons.

Surface features such as these can be easily described according to their elevations

relative to a fixed reference plane. As an example, terrain elevations are typically
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specified relative to the Earth’s sea level in topographical maps and datasets. Sim-

ilarly, elevation-based datasets are used in the computer graphics field to represent

the topology of virtual terrain surfaces. These datasets are organized in a two-

dimensional grid, where the fixed reference plane that the elevation data points are

relative to may be any arbitrarily chosen plane in the virtual environment. These

elevation-based datasets are commonly referred to as heightfields or heightmaps

[11, 28, 37]. An example of a two-dimensional heightfield stored in an image for-

mat is shown in Figure 2 [24], where the brighter pixels in the image correspond

to higher surface elevations and the darker pixels in the image correspond to lower

surface elevations.

Figure 2: Coastal terrain heightfield
(Taken from LevelDev [24])

Heightfields are the most frequently used data structure for representing the

topology of virtual terrains because their implicit surfaces are simple to triangulate

for polygon-based rendering and collision detection, they can be created easily by

artists in painting and image editing programs, and there are many freely available
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global elevation datasets [40] that are compatible with heightfield-based terrain

rendering systems. An NxM heightfield is triangulated by considering it as an

(N − 1)x(M − 1) grid of quadrilaterals. Each quadrilateral lies between four

neighboring columns in the heightfield and is represented by two triangles in the

terrain mesh. An example of the triangulation of a 5x5 heightfield is illustrated

in Figure 3.

Figure 3: Heightfield triangulation

In addition to modeling static terrain surfaces, heightfields are used extensively

in the computer graphics field to simulate dynamic terrain landscapes [1, 18, 26, 38,

41] and large bodies of water, such as oceans and lakes [8, 20, 39]. In simulations of

dynamic terrains, heightfields represent the state of a deformable terrain surface,

typically composed of soft materials such as sand or soil, at a particular point

in time. These types of heightfields are commonly referred to as dynamically

displaced heightmaps (DDHM s) because the topological data in the heightmap

is subject to change during the game, simulation, or animation. These changes
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are influenced by the actions of the players, rigid objects, and deformers, and by

natural phenomenon such as soil erosion [31] and soil slippage [6, 9].

Sumner et al. [38] and Li et al. [26] developed models of soil based solely

on dynamically displaced heightmaps. Sumner et al. approached the problem of

modeling the creation of subtle deformations, such as footprints and tire tracks, on

soft, virtual landscapes composed of sand, soil, and mud [38]. In their approach,

deformations are created on the surfaces of heightfield-based landscapes where

an overlap is detected between the soil and an animated character or rigid body

model. The overlapped quantities of soil are either compacted downwards, based

on a compaction ratio associated with the soil, or transferred horizontally to the

nearest column of the heightfield that is not overlapped by any rigid body models

or characters. A soil slippage algorithm is applied to the soil grid to reduce the

angles of the steep slopes created as a result of soil displacements. This soil

slippage algorithm identifies the columns in the heightfield that form steep slopes

with neighboring columns. Soil is transferred downwards along these slopes until

the angles of the slopes are less than an empirically chosen threshold. While this

algorithm is sufficient for producing subtle deformations on virtual terrain surfaces,

it is not suited for simulating larger scale deformations because it is based on a

heuristic approach with empirically derived constants rather than the physics of

soil movement.

Li et al. proposed a physics-based soil slippage algorithm for heightfield-based

representations of soil [26]. In their approach, the stability of a sloped configu-

ration of soil is analyzed based on the Mohr-Coulomb failure criterion [9]. The

forces acting on an unstable configuration of soil are calculated and used to dis-

place quantities of sliding soil in a dynamically displaced heightmap. This soil
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slippage model is described in more detail in Section 2.1.2.

Heightfields are well-suited for modeling the shape, layout, and topology of

soils piled on the ground, but, they are not able to represent quantities of loose,

poured, or falling soil. These types of soils are typically introduced in interactive

simulations of dynamic soils as a result of soil-tool interactions during excavation.

For example, the soil contained in the bucket of a simulated excavator must even-

tually be poured out of the bucket to make room for new soil and to allow for

further digging. When soil is poured out of a bucket, it enters the falling state.

While in this state, the soil is not in contact with the ground or any other rigid

object, and it is influenced by gravity. Because quantities of loose, poured, and

falling soil are not resting on the ground or another rigid object, the surfaces of

these types of soils cannot be described by an elevation-based data structure such

as a heightfield. Alternative data structures must be used to model these types of

soils in computer graphics applications.

Because soils are a type of granular material, the shape, size, and layout of a

quantity of soil can be described according to the positions, sizes, and shapes of

the individual grains that compose the soil. In the field of computer graphics, this

type of representation is commonly referred to as a particle-based representation, a

particle-system, or a discrete element method (DEM ) of simulation. Particle-based

representations of granular materials are often desired in physical simulations be-

cause the topologies of the simulated materials are able to evolve naturally and

freely based on interparticle interactions [3]. These interparticle interactions can-

not be modeled in grid and mesh-based representations because the conceptual

particles of the material are grouped together into a numeric quantity in each grid

cell. However, due to memory and processing time constraints, it is not feasible
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to simulate all of the grains in extremely fine-grained materials such as sand and

soil. Instead, the simulated particles typically represent discrete elements that

are fewer in number, and therefore larger in size, than the actual grains of the

material.

Bell et al. developed a particle-based simulation of granular materials that is

represented by a large system of rigid, non-spherical grains [3]. The shape and size

of each grain in their simulation is modeled as a composition of smaller, spherical

particles that are constrained together during displacement. Two examples of

non-spherical soil grains used in their approach are illustrated in 2D in Figure 4.

(a) (b)

Figure 4: Non-spherical soil particles

These grains exhibit sticking and slipping behaviors when they come into contact

with each other due to the concave features on their non-spherical bodies. These

stick-slip behaviors cause the resulting simulation to produce natural-looking an-

gles of repose that are claimed to be consistent with experimental results for the

type of material being simulated. However, this approach is not suited to real-

time applications because a very large number of particles are required to achieve

a realistic simulation of moderately sized bodies of granular materials. As an ex-

ample, while simulating an hourglass containing approximately 100, 000 spherical
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sand particles, their system took an average of 3.18 minutes to render a single

frame of animation [3].

Zhu et al. developed a simulation of sand that follows particle-based fluid simu-

lation techniques [42]. In their approach, the particle-in-cell (PIC ) [17] and fluid-

implicit-particle (FLIP) [4] methods are extended to simulate the frictional and

cohesive characteristics of extremely fine-grained materials. The PIC method sim-

ulates the compressible flow of a fluid by tracking the motion of particles through

a three-dimensional grid. The fluid variables at each grid cell are calculated each

time step by performing a weighted averaging of nearby particle values. The FLIP

method extends and improves the PIC method to reduce the numerical dissipa-

tion that is caused by repeatedly averaging and interpolating particle values over

time. The FLIP method achieves this by using the particles as the fundamental

representation of the fluid, and not the grid [42]. The method of Zhu et al. is a hy-

brid, three-dimensional grid and particle-based approach that is computationally

expensive and not suited to real-time applications.

Other hybrid representations of soils have been developed that combine multi-

ple techniques for representing soils in real-time computer graphics applications.

Holz et al. proposed one such method that uses dynamically displaced heightmaps

to represent the soil on the ground in its generally static state and particle-based

methods to represent the soil above the ground in its highly dynamic state [18].

In this approach, spherical soil particles are generated above the surface of the

ground in all locations where rigid objects are detected to be carving over or

pushing through the ground in a horizontal manner. The generated soil particles

are merged back into the soil grid on the ground when they settle into a state

of static equilibrium. The hybrid approach of Holz et al. significantly reduces
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the number of particles required to achieve a realistic simulation because large

scale features are modeled with the efficient heightfield-based method, while small

scale, highly dynamic features are modeled with the better-suited particle-based

approach. Furthermore, the authors present an adaptive soil sampling method

that further reduces the number particles in the simulation. This adaptive soil

sampling method temporarily combines groups of particles that have strongly

synchronized movements into a single constrained particle. While this hybrid

approach is suited for real-time simulations, it is computationally expensive to

perform mass conserving transformations between the heightfield-based represen-

tation of soil and the particle-based representation of soil. Additionally, a separate

dynamically displaced heightfield is required for each rigid surface in the simula-

tion that is capable of supporting mounds of piled soil. Therefore, complex sim-

ulations with many rigid objects require many dynamically displaced heightfield

data structures. Each additional heightfield introduces a penalty on the overall

performance of the simulation because additional generation, collision detection,

and merging operations are required.

Onoue et al. [32] proposed another hybrid approach that continues the work

done by Sumner et al. [38]. In their approach, a two-dimensional dynamically

displaced heightmap is used to represent the ground soil, a spherical particle-

system is used to represent the loose, poured, and falling soil, and a multi-level,

height-based data structure is used to represent the surface of the soil piled on top

of concave polyhedrons. This multi-level, height-based data structure is a two-

dimensional grid of stacked height spans, where each height span represents the

vertical span of a rigid object or piled soil in a column of the grid. The authors

refer to this multi-level data structure as a height span map. A 2D example of a
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height span map is illustrated in Figure 5.

Figure 5: Height span map

A height span in a column of a height span map is defined by its top and bottom

points, where these points are recorded as height values relative to the bottom of

the column. A height span map is capable of representing separate quantities of

soil piled on different parts of a 3D object. Onoue et al. adapted the soil model

proposed by Sumner et al. to facilitate the compaction and subtle deformation of

ground soils based on overlaps with the rigid body height spans in a height span

map.

2.1.2 Soil Slippage

Soil-covered slopes are subject to slope instability and slope failure under cer-

tain conditions [6, 9, 31]. These conditions are related to the forces that are

imposed on sloped quantities of soil due to gravity, friction, and cohesion. The

gravitational force exerted on any object resting on an inclined plane is separated

into two components, one component that is perpendicular to the slope, denoted
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by ~g⊥, and one that is parallel to the slope [15], denoted by ~g‖. The decomposition

of the gravitational force acting on a body of soil resting on an inclined plane is

illustrated in Figure 6.

Figure 6: Soil on an incline
(Adapted from Giancoli [15])

The component of the gravitational force that is parallel to the slope, denoted by

~g‖, is referred to as the shear stress force. The frictional force opposing the shear

stress force, denoted by ~Ff , is referred to as the shear strength force. The shear

stress and shear strength forces are the only forces contributing to the movement

of soil because the magnitude of the normal force, denoted by ~FN , is equivalent to

the magnitude of ~g⊥. In the case of soil slippage, the inclined surface supporting

a sliding quantity of soil is the surface of another quantity of soil that is in equi-

librium. Therefore, the frictional force, ~Ff , is related to the internal friction and

cohesion properties of the soil being simulated. Soil slippage does not occur along

a slope unless the magnitude of the shear stress force is greater than the magni-

tude of the shear strength force. By determining whether or not this condition

holds, the stability of a soil-covered slope may be analyzed.

Li et al. proposed a physics-based soil slippage algorithm for heightfield-based
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soils [26]. In their approach, the heightfield representing the soil is divided into

rows of soil columns, where the two-dimensional quantity of soil between a pair

of neighboring columns is referred to as a soil slice. The area of each soil slice is

split into two parts, a triangular area at the top and a rectangular area at the

bottom. The triangular areas at the top are candidate for soil slippage and the

rectangular areas at the bottom are in static equilibrium. The stability of the slope

in a particular slice is analyzed by considering only the slope of the triangular area

at the top of the slice. An example of a row of soil columns in a heightfield is

illustrated in Figure 7. In this example, there are 11 soil columns in the row and

10 soil slices between the columns.

Figure 7: Soil slices in a heightfield

Li et al. denote the shear stress and shear strength forces acting on a quantity

of soil above an arbitrary inclined plane by τ and s, respectively [26]. Shown

in Figure 8 is a free body diagram of the triangular area of soil at the top of

a slice [26]. In this diagram, W represents the weight of the soil wedge resting

above the inclined plane denoted by the angle θ and the length L. The rise and

run of the slope are denoted by h and ∆x, respectively. In a heightfield-based
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approach, ∆x corresponds to the distance between two neighboring soil columns

and h corresponds to the difference in their heights.

Figure 8: Free body diagram of sloped soil
(Adapted from Li et al. [26])

An inclined plane that is supporting a quantity of soil is a failure plane if the

soil quantity above the plane will inevitably experience soil slippage [6, 9]. Li

et al. analyze the stability of the slope in the triangular area of a soil slice by

evaluating the ratio between the magnitude of the shear stress and shear strength

forces [26]. This ratio is referred to as the factor of safety [6, 9], denoted by F ,

and its evaluation is given in Equation 1.

F =
s

τ
=
cL+W cos(θ) tan(φ)

W sin(θ)
(1)

In this equation, c and φ are constants that denote the coefficient of cohesion

and the angle of internal friction, respectively, of the type of soil that is being

simulated. The coefficient of cohesion is measured in ton-force per meter (t/m),

where one ton-force is approximately 9.8kN . The angle of internal friction is

measured in radians. Because L and W depend on the angle of the inclined plane,

denoted by θ, they are calculated based on θ, as shown in Equations 2 and 3. In
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Equation 2, γ denotes the specific weight, which is the weight per unit area, of the

soil being simulated [2]. The specific weight is measured in ton-force per unit area

(t/m2).

W =
(h− tan(θ)∆x)∆xγ

2
(2)

L =
√

∆x2 + tan2(θ)∆x2 (3)

By evaluating the factor of safety using Equation 1, an arbitrary inclined plane,

denoted by θ, can be tested for failure. If F < 1 for the plane, then the soil above

the plane is unstable and will inevitably experience soil slippage. If F ≥ 1 for all

inclined planes in the sloped soil, which are the planes in the range [0, tan−1( h
∆x

)],

then the sloped soil in the slice is stable. However, it is normally not desired to

test arbitrary inclined planes for failure with this method. Instead, it is desirable

to calculate the angle of the failure plane in a soil slice, if one exists, for a given

configuration of sloped soil, i.e. for any combination of h, ∆x, c, φ, and γ. To

calculate the angle of the failure plane in a slice, Li et al. solve for θ in Equation 4

[26].

F =
s

τ
=
cL+W cos(θ) tan(φ)

W sin(θ)
= 1 (4)

If a solution for θ exists and it is in the range [0, tan−1( h
∆x

)], θ is the angle of the

failure plane that separates the sliding wedge of soil from the static soil in the

triangular area at the top of a slice.

To approximate the magnitude of the net force, denoted by f , acting on a
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wedge of sliding soil above a determined failure plane, Li et al. divide the wedge

into smaller segments, referred to as dovetails, as shown in Figure 9a [26]. The

wedge is divided into a set of n dovetails, where the height of each dovetail, denoted

by ∆h, is the same. The ith dovetail in the wedge is the area defined by the points

hi, hi−1, and b. The forces exerted on the ith dovetail are shown in the free body

diagram in Figure 9b.

(a) Set of dovetails (b) Single dovetail

Figure 9: Free body diagram of a dovetail
(Adapted from Li et al. [26])

In this diagram, τi and si denote the shear stress and shear strength forces, re-

spectively, Ni and N ′i denote the normal forces exerted on dovetails i−1 and i+1,

respectively, and s′i is the equal and opposite force to the shear strength force

experienced by dovetail i+ 1. The net force acting on the wedge of soil above the

determined failure plane, denoted by f , is approximated as the sum of all of these

forces across all dovetails. This calculation is shown in Equation 5 [26].

f =
n∑
i=1

(τi + si + s′i +Ni +N ′i) (5)

For neighboring dovetails i and i−1, the normal forces between them, denoted

by Ni and N ′i−1, have the same magnitude, but opposite directions. That is,
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Ni = −N ′i−1 for i = 2, .., n. The topmost dovetail does not support any mass of

soil, so it is known that N ′n = 0. For these reasons, the sum of the normal forces

across all dovetails is reduced to N1. Similarly, the shear stress forces between

any two neighboring dovetails, denoted by si and s′i−1, have a sum of 0. That is,

si = −s′i−1 for i = 2, .., n. It is known that s′n = 0 because the top dovetail in

the wedge does not support any mass of sliding soil. Therefore, the sum of the

shear strength forces across all dovetails is reduced to s1. Using this knowledge,

Equation 5 can be simplified, as shown in Equation 6.

f = N1 + s1 +
n∑
i=1

τi (6)

Because N1 is canceled by the opposing normal force of the static soil supporting

the wedge, it is considered to be equal to 0. Furthermore, it is known that τ1+s1 =

0 because τ1 and s1 are parallel to the failure plane. Shown in Equation 7 is a

simplified version of Equation 6 that takes these cancellations into consideration

[26].

f =
n∑
i=2

τi (7)

For increased accuracy, Li et al. derive Equation 8 from Equation 7 by letting ∆h

tend zero [26]. That is, Equation 8 is used to calculate the net force acting on a

wedge of sliding soil where the conceptual dovetails in the wedge are infinitesimal.

f =
γ∆x2

4
ln

h2 + ∆x2

(tan(θ)∆x)2 + ∆x2
cos(θ) +

γ∆x

2
(h− tan(θ)∆x−∆x(tan−1(

h

∆x
)− θ)) sin(θ)

(8)
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The velocity of the sliding soil is recorded for each slice of the heightfield [26].

The magnitude of this velocity, denoted by v, is updated each time step using the

Euler integration method shown in Equation 9.

v′ = v +
f

W
∆t (9)

In this equation, v and v′ are the magnitudes of the sliding soil’s velocity at the

beginning and end of the time step, respectively. The duration of the time step

is given by ∆t. The magnitude of the sliding soil’s velocity at the end of the time

step, denoted by v′, is equivalent to the magnitude of the sliding soil’s velocity at

the beginning of the next time step.

The height of a wedge of sliding soil in a slice is given by h− tan(θ)∆x, where

θ is the angle of the failure plane in a slice, and h and ∆x are the rise and run,

respectively, of the slope. Because the direction of the sliding wedge’s velocity,

denoted by v, is perpendicular to the soil columns, the fraction of the sliding

wedge’s height that is transferred from a higher column to a lower one over an

interval of time is given by v∆t/∆x. That is, the height that is removed from a

higher column and added to a lower one is calculated with Equation 10.

∆h =
(h− tan(θ)∆x)v∆t

∆x
(10)

2.2 Voxel-Based Terrain Rendering

In this section, we provide an overview of several voxel-based terrain rendering

techniques and algorithms that are well suited for real-time computer graphics

applications. In the first subsection, we define the concept of a voxel and describe
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how sets of voxels are used to model complex virtual terrain surfaces. In the sec-

ond subsection, we describe methods for procedurally generating complex terrain

surfaces in a voxel-based approach. In the third subsection, we review an algo-

rithm for extracting a renderable triangular mesh corresponding to the implicit

terrain surface in a voxel-based representation.

2.2.1 Terrain Representation

A regular three-dimensional grid that divides a cubic volume of virtual space

into discrete elements is referred to as a volumetric grid, voxel grid, or voxel

map [19, 23]. In computer graphics, the discrete volume elements in this three-

dimensional grid are referred to as voxels due to their similarity with pixels, which

are picture elements, and texels, which are texture elements. The shape, layout,

and topology of a voxel-based terrain is typically represented through the encoding

of a signed or unsigned density field in a voxel grid [14, 22, 23]. In this approach,

the density of the terrain is sampled at each of the corner points, which are referred

to as sample points, on the voxels in the grid. In the signed density approach, the

sign of each density value is used to indicate whether the respective sample point is

located inside or outside the solid terrain [14, 23]. In the typical implementation,

negative density values indicate that the point is inside the terrain and positive

density values indicate that the point is outside the terrain. The surface of the

terrain is defined as the set of points in the voxel grid where the encoded signed

density field has an interpolated density value equal to 0. Surfaces that are rep-

resented by a set of points sharing a common value through a three-dimensional

space are commonly referred to as isosurfaces. A two-dimensional example of an

isosurface represented by a signed density field is illustrated in Figure 10.
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Figure 10: Terrain isosurface in a signed density field

In the unsigned density approach, density values typically range from 0 to D,

where D is the maximum density of terrain that can exist at a particular sample

point. A surface threshold value, denoted by S, is chosen in the range [0, D] to

indicate the set of points in the voxel grid which define the isosurface of the terrain.

This surface threshold value is also referred to as an isovalue, and it is equivalent to

the 0 value in the signed density approach. In the typical implementation, sample

points with an unsigned density value in the range [S,D] are considered to be

inside the terrain and those with a density value in the range [0, S) are considered

to be outside the terrain [22]. To provide an even distribution of density values,

S is typically chosen to be the midpoint between 0 and D, given by D/2.

2.2.2 Terrain Generation

Voxel-based representations of terrain are capable of modeling complex, three-

dimensional surface features such as overhangs, caves, arches, and tunnels. How-
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ever, it is difficult for artists and developers to produce voxel maps manually due

to their three-dimensional nature. Instead, voxel maps are typically generated

procedurally with functions, known as density functions, that vary over a three-

dimensional domain [14]. These density functions typically employ coherent noise,

such as Perlin noise, Voronoi noise, or value noise, to facilitate the generation of

randomized, natural-looking terrain surface features. The occurrence, size, and

shape of these randomly generated surface features can be controlled by adjusting

the amplitude, frequency, persistence, and number of octaves of the noise in the

density function. In fact, density functions can be tailored to produce voxel maps

for static terrains with a wide range of topologies. Geiss demonstrated this variety

by providing a set of density functions that can be used to produce surreal-looking

3D terrains, natural-looking terrains, spherical planets, underground tunnels, cav-

erns, terraces, shelves, arches, and more [14]. A few examples of terrains generated

by Geiss are shown in Figure 11 [14].

(a) (b)

(c) (d)

Figure 11: Procedural terrains
(Taken from Geiss [14])
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2.2.3 Terrain Visualization

Volume rendering is concerned with the graphical visualization of discrete

three-dimensional datasets [13, 19, 25, 27]. Volume rendering techniques are di-

vided into two main categories: direct volume rendering techniques and indirect

volume rendering techniques. In a direct volume rendering technique, an image, or

rendering, of a volumetric dataset is produced by transforming projected density

values into optical properties such as color and opacity [13, 19, 25]. That is, direct

volume rendering techniques generate visualizations of three-dimensional datasets

directly from density data. In an indirect volume rendering technique, an implicit

isosurface is extracted from the volumetric data and represented in the form of

a geometric mesh [27]. This mesh is rendered independently from the volumetric

data using traditional polygon-based rendering techniques.

Direct volume rendering techniques typically use a ray-traced approach to

project three-dimensional datasets onto a two-dimensional image plane. In this

approach, a ray is cast into the three-dimensional space through each pixel on

the rendering camera’s image plane. The three-dimensional dataset is repeatedly

sampled along each of these rays until the ray intersects with a solid object in

the volume, or until the ray escapes the volume without any intersections. If an

intersection is found, the pixel on the image plane that the ray passes through

is shaded based on the density of the intersected surface. While this method is

capable of producing high quality visualizations of volumetric data, it is not suited

for rendering voxel-based terrain surfaces in real-time applications because it is

too expensive computationally to perform repeated samples of the voxel grid along

the rays that are cast.
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Indirect volume rendering techniques are the preferred method for visualizing

voxel-based terrain surfaces [14, 23] because the extracted terrain mesh can be

rendered in real-time. The most common indirect volume rendering technique used

for voxel-based terrain is the Marching Cubes algorithm [27]. In this algorithm, a

geometric mesh representing the terrain surface is extracted from the voxel grid by

independently triangulating the implicit isosurface contained in the cubic space of

each voxel. An example Marching Cubes voxel in a signed density grid is shown

in Figure 12.

Figure 12: Marching Cubes voxel

The set of points on the isosurface that intersect with the edges of a voxel define

the vertices of the surface mesh in that voxel. These intersection points occur on

all voxel edges that connect a sample point that is inside the terrain to a sample

point that is outside the terrain. In this thesis, we refer to these voxel edges as

surface edges. The position of the surface intersection point on each of these edges

is determined using an interpolation method, such as linear interpolation or cosine

interpolation, to determine where along the edge the density field is equal to the

surface threshold value. Recall from Section 2.2.1 that the surface threshold value
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S is given by D/2 in the unsigned density approach and by 0 in the signed density

approach. The formula for calculating the position of a vertex on a surface edge

with the linear interpolation method is given in Equation 11.

x = x1 +
S − ρ1

ρ2 − ρ1

· (x2 − x1) (11)

In this equation, x1 and x2 represent the positions of the two connected sample

points on the surface edge and ρ1 and ρ2 denote the densities at x1 and x2, re-

spectively. The positions of the surface vertices that are created on the edges of

the signed density voxel shown in Figure 12, when Equation 11 is used, are shown

in Figure 13. Note that it is not yet clear how these surface vertices should be

connected to one another to form a polygonal mesh representing the isosurface

inside the voxel.

Figure 13: Marching Cubes voxel with surface vertices

Because there are 8 sample points per voxel, one on each corner point, and

each sample point is either considered inside or outside the solid terrain being

triangulated, there are a total of 28 = 256 different configurations of a Marching
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Cubes voxel with respect to the inside-outside relation. These 256 different con-

figurations are enumerated with a single byte, where the nth bit of the byte is set

to 1 if and only if the nth sample point on the Marching Cubes voxel is greater

than or equal to the surface threshold value. A look-up table indexed by these

byte values is used to define the set of triangles that should be generated from the

interpolated surface vertices in order to represent the isosurface contained within

the voxel. This look-up table is designed such that the complete set of triangles

generated in a voxel grid form a seamless triangular mesh of the isosurface encoded

in that grid.

Figure 14: Marching Cubes equivalence classes
(Taken from Geiss [14])

Because many of the 256 different voxel configurations can be considered a

mirrored, inversed, or symmetric version of another configuration, the number of

configurations which yield a unique triangulation of a voxel in the Marching Cubes

algorithm is reducible to 15 distinct classes, which are referred to as equivalence

classes [23]. The 14 of these 15 equivalence classes that result in the generation of
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at least one triangle are shown in Figure 14 [14]. The triangles that are generated

by the Marching Cubes algorithm in the signed density voxel shown in Figure 12

are shown in Figure 15.

Figure 15: Triangulated Marching Cubes voxel

2.2.4 Terrain Level of Detail

Level of detail (LOD) algorithms are often employed to increase the efficiency

of rendering virtual terrain surfaces. These algorithms increase efficiency by adap-

tively reducing the number of triangles that are rendered for sections of terrain that

have less visual importance when projected on the screen [11, 14, 23, 28, 37]. The

importance of a terrain surface in a rendered image is typically reduced propor-

tionally with its distance from the rendering camera due to perspective projection,

occlusion, blurring, and fog. By rendering distant sections of terrain with fewer

triangles, the rendering workload on the GPU is reduced, because fewer vertices

are processed, and the change in visual quality for the player is relatively small.

However, näıvely triangulating a continuous terrain surface at various resolutions

causes cracks, or holes, to be created in the resulting terrain mesh. These cracks
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occur along the edges that connect two sections of terrain that are triangulated

at different resolutions, as shown in Figure 16.

Figure 16: Cracks in a multi-resolution mesh

Most level of detail algorithms specify strategies for covering, hiding, or filling

these cracks with specialized geometric meshes. Shown in Figures 17 and 18 are

two examples of crack filling strategies for level of detail terrain meshes.

Figure 17: Filled cracks in a multi-resolution mesh

Figure 18: Stitched cracks in a multi-resolution mesh

The first strategy, shown in Figure 17, generates additional triangles to fill the

cracks in the mesh. The second strategy, shown in Figure 18, replaces the triangles

that lie on the edge of the higher detail mesh with specialized triangles that stitch

the higher and lower detail meshes together.
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Level of detail algorithms have been developed for Marching Cubes terrains by

Geiss and Lengyel [14, 23]. In their approaches, the voxel grid is partitioned into a

set of cubic sections that are referred to as terrain blocks. A voxel grid consisting

of eight terrain blocks is shown in Figure 19.

Figure 19: Terrain blocks

A terrain block contains at least two voxels on each of its dimensions. Each

terrain block is adaptively assigned a level of detail based on its distance from

the camera. At each lower level of detail, a terrain block’s resolution is halved on

each dimension. As an example, Geiss partitions terrain voxel grids into sets of

32x32x32 terrain blocks [14]. In this approach, a terrain block that is one level

of detail lower than the maximum has a resolution of 16x16x16. Furthermore, a

terrain block that is two levels of detail lower than the maximum has a resolution of

8x8x8. The minimum resolution of a terrain block is 2x2x2. Regardless of a terrain

block’s resolution, it always encompasses the same volume of three-dimensional

space in the grid. That is, the voxels in lower detail terrain blocks are increased

in size such that they fill the entire space of their respective block. By reducing

the number of voxels and increasing their size in lower detail terrain blocks, the

triangles generated are fewer in number and larger in size. Therefore, lower detail
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terrain blocks are more efficient to render than higher detail terrain blocks. A

voxel grid consisting of eight terrain blocks with varying levels of detail is shown

in Figure 20.

Figure 20: Level of detail terrain blocks

As mentioned, näıvely extracting a terrain mesh from a multi-resolution voxel

grid with the Marching Cubes algorithm produces a mesh that contains cracks

between higher and lower detail terrain blocks. Lengyel proposed an algorithm,

called the Transvoxel algorithm, that generates geometric stitches to fill these

cracks [23]. This algorithm requires that the level of detail of a terrain block

differs by no more than one from the level of detail of any of its neighboring

terrain blocks.

The Transvoxel algorithm uses a look-up table, in addition to the Marching

Cubes look-up table, to define the triangulation of transition cells, which are voxels

in lower detail terrain blocks that border terrain blocks that are one level of detail

higher. In a transition cell, the frequency of density sample points is doubled

on any face adjacent to a higher resolution terrain block. The faces adjacent to a

higher detail terrain block are referred to as full resolution faces. The three possible

configurations of a transition cell are illustrated in Figure 21, where the illustrated
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transition cells, from left to right, have one, two, and three full resolution faces. In

this algorithm, it is assumed that voxels border at most one neighboring block on

each dimension. Therefore, transition cells with four, five, and six full-resolution

faces are not considered.

(a) (b) (c)

Figure 21: Transvoxel transition cells
(Adapted from Lengyel [23])

As Lengyel argues, the number of classifications of triangulations is substan-

tially large for transition cells [23]. For example, a transition cell with one full

resolution face has a total of 213 = 8, 192 unique cases, a transition cell with two

full resolution faces has a total of 217 = 131, 072 unique cases, and a transition cell

with three full resolution faces has a total of 220 = 1, 048, 576 unique cases. Ideally,

the number of unique triangulation cases for any transition cell should be on the

same order of magnitude as the number of cases in the Marching Cubes algorithm

[23]. To achieve this, Lengyel first reduces the number of distinct triangulation

cases for the transition cell with a single full resolution face by dividing it into two

smaller cells, as shown in Figure 22 [23]. The portion of the divided transition cell

that contains the full resolution face, shown in Figure 22b, is composed of 9 unique

sample points resulting in 29 = 512 cases. The portion of the divided transition

cell not containing the full resolution face, shown in Figure 22c, is composed of 8
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unique sample points and can be treated similarly to a Marching Cubes voxel. The

Transvoxel algorithm provides a look-up table that defines the 512 triangulations

of the portion of a divided transition cell that contains the full resolution face [23].

The portion of the divided transition cell that does not contain the full resolution

face is triangulated normally with the conventional Marching Cubes algorithm.

(a)

(b) (c)

Figure 22: Divided transition cell
(Adapted from Lengyel [23])

The number of unique cases for a transition cell with two full resolution faces

is reduced by dividing the cell into three parts, as shown in Figure 23. Figure 23

shows a top-down view of the division of a transition cell that borders two higher

resolution terrain blocks. In this case, the two divided cells that are adjacent to a

higher resolution terrain block no longer have a cubic shape. However, these two

cells are not triangulated any differently from the cubic cell shown in Figure 22b.

Their resulting meshes are transformed after triangulation such that they fit seam-
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lessly inside their non-cubic cells. The method used to triangulate a transition cell

with three full resolution faces is an analogous extension of the method used to

triangulate a transition cell with two full resolution faces. However, transition cells

with three full resolution faces are divided into four separate cells, where three of

the cells are adjacent to a higher resolution terrain block and one of the cells is

similar to a Marching Cubes voxel.

Figure 23: Corner transition cell
(Adapted from Lengyel [23])

2.3 Voxel-Based Fluid Simulation

In this thesis, we are concerned with the displacement of soil properties in a

voxel grid that consists of velocities. A relevant mathematical formulation that

performs the appropriate displacements has been devised for voxel-based fluid

simulators. Voxel grids are used in physics-based simulations of fluids, such as

water, clouds, smoke, and fire, to track the motion of a fluid through a fixed cubic

volume of three-dimensional space [5, 36]. Each voxel in the grid represents a set

38



of fluid properties, such as unsigned density, velocity, and temperature, that are

sampled at a particular point inside the voxel’s volume of space. The motion of

a simulated fluid over time is typically governed by the Navier-Stokes equations

for incompressible flow [5, 36]. In a voxel-based approach, a numerical solution to

the Navier-Stokes equations is required to determine the velocity of the fluid in

each voxel at a particular point in time during the simulation. The fluid properties

recorded in the voxel grid are displaced based on these velocities using an advection

algorithm. We discuss advection algorithms in the remainder of this section.

The set of velocities in a voxel grid define a three-dimensional velocity field,

denoted by ~u, for the fluid. This velocity field is used to transport sampled fluid

properties, including the velocity property itself, through the voxel grid over a

discrete time interval, denoted by ∆t [5, 36]. We denote the velocity of an arbitrary

voxel in the grid by ~ui,j,k, where i, j, and k are the indices of the voxel. The process

of transporting a fluid property, such as density, velocity, or temperature, through

the body of a fluid is referred to as advection. Algorithms for advecting fluid

properties in a voxel-based representation typically follow the format provided in

Equation 12 [5], where qn denotes the set of values in the voxel grid for an advected

property at the beginning of the nth time step.

qn+1 = advect(~u,∆t, qn) (12)

One such advection algorithm operates by independently displacing each voxel

in the grid by its respective velocity over a given time interval [16, 33]. These

displaced voxels represent the new locations of the fluid properties at the end of

the given time interval. The fluid properties in a displaced voxel are redistributed
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into the overlapped voxels in the grid based on the extent of their overlap. Shown

in Figure 24 is a two-dimensional example of the displacement of a voxel by this

algorithm, where the voxel being displaced is the center voxel with the indices i

and j. In the example in Figure 24, the value of a fluid property in the center voxel

at the beginning of the time step, denoted by qni,j, is redistributed into the four

overlapped voxels that have the indices (i, j), (i+1, j), (i, j−1), and (i+1, j−1).

Figure 24: Displacement of a voxel

The Ω function shown in Equation 13 calculates the length of the overlap

between two voxels on one dimension, where x1 and x2 are the components of the

two voxel’s positions on that dimension.

Ω(x1, x2) = 1−min(1, |x1 − x2|) (13)

In the example in Figure 24, the fraction of qni,j that is distributed into each

overlapped voxel is calculated with Equation 14 [16], where a and b are the indices

of an overlapped voxel and λa,b(i, j) is the fraction of the center voxel’s displaced
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volume that overlaps with the voxel (a, b).

λa,b(i, j) = Ω(i+ (~ui,j)x∆t, a) · Ω(j + (~ui,j)y∆t, b) (14)

Equation 14 can be easily extended to three dimensions, as shown in Equation 15.

In this equation, a, b, and c are the indices of an overlapped voxel in the three-

dimensional grid.

λa,b,c(i, j, k) = Ω(i+ (~ui,j,k)x∆t, a) ·Ω(j + (~ui,j,k)y∆t, b) ·Ω(k+ (~ui,j,k)z∆t, c) (15)

In this thesis, we refer to the amount of a displaced property that is transferred

into an overlapped voxel from a single displaced voxel as an inflow. The value of a

fluid property in a voxel at the end of the time step, denoted by qn+1
i,j,k , is determined

by considering the combination of all inflows of that property. In the case of a

spatially additive fluid property, such as density, qn+1
i,j,k is given by the sum of all

inflows of that property. This calculation is given in Equation 16, where N , M ,

and L denote the resolution of the voxel grid tracking the fluid on the x, y, and z

axes, respectively.

qn+1
i,j,k =

N−1∑
a=0

M−1∑
b=0

L−1∑
c=0

qna,b,cλi,j,k(a, b, c) (16)

In the case of non-additive fluid properties, such as velocity and temperature,

an averaging technique is typically used to determine the average inflow of the

property over the given time interval. This average value is what is recorded for

qn+1
i,j,k at the end of the time step. For example, to conserve momentum, the average
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of velocities weighted by mass is used to determine the inflow of velocities into a

voxel.
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3 Voxel Soil

In this chapter we present a new, practical, voxel-based algorithm for sim-

ulating sands and soils in real-time computer graphics applications. We devote

a section to each of the following: representation, simulation, visualization, and

implementation. In the first section, we describe our method of representing soil

in a voxel grid. In the second section, we present our GPU-based algorithms for

simulating the physics of soils in our voxel-based representation. In the third sec-

tion, we describe the techniques used to visualize the surfaces of the soils for a

single frame of animation. In the final section, we discuss details related to the

implementation of the proposed algorithms.

3.1 Representation

In our approach, a voxel grid is used to track the motion and evolution of a

simulated quantity of soil in a three-dimensional space. Each voxel in this grid

is described according to the properties of the soil that is contained inside its

respective volume of space. These properties include an unsigned density value, a

three-dimensional velocity vector, and a three-dimensional force vector. For any

voxel in the grid with indices i, j, and k, the density of the soil inside the voxel

is denoted by ρi,j,k, the velocity of the contained soil is denoted by ~ui,j,k, and the

direction of the force applied on the contained soil is denoted by ~fi,j,k. In this

thesis, the set of density values in a voxel grid are referred to as a density field,

the set of velocities in a voxel grid are referred to as a velocity field, and the set

of forces in a voxel grid are referred to as a force field. The density field, velocity

field, and force field are denoted by ρ, ~u, and ~f , respectively.
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For simplicity, values in the density field, denoted by ρi,j,k, are recorded as

fractions of the maximum soil density that can occupy the volume of a single voxel.

Recall from Section 2.2.1 that, in an unsigned density approach, the maximum

density of a particular material at any given sample point in a voxel grid is denoted

by D. In our approach, the density of the soil inside an arbitrary voxel is given

by ρi,j,kD. Therefore, a voxel is considered to be completely occupied by soil if

it has a value of 1.0 in the density field. Furthermore, a voxel is considered to

be half occupied or one quarter occupied by soil if it has a value of 0.5 or 0.25,

respectively. An example of a 3x3x1 slice of a density field is shown in Figure 25,

where the soil inside each voxel is visualized as though it is piled on the bottom

of its containing voxel.

Figure 25: Slice of a density field

The voxel grid also tracks the positions of rigid bodies inside its three-dimensional

space. In addition to recording values related to the properties of the soil, each

voxel records an unsigned density value that represents the combined density of

the rigid bodies occupying its space. For any voxel in the grid with indices i, j,
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and k, the combined density of the rigid bodies inside that voxel is denoted by

ψi,j,k. The set of rigid body density values in a voxel grid are referred to as a

collision field, denoted by ψ, and collision fields are used to detect and resolve

collisions between rigid bodies and soil during the simulation. We assume all rigid

bodies in a collision field share a uniform density, where the maximum density

of rigid bodies that can occupy the volume a single voxel is denoted by D2. For

simplicity, the density values in the collision field, denoted by ψi,j,k, are recorded

as fractions of D2 similar to the soil density values in ρ. An example of a combined

density and collision field is shown in Figure 26, where rigid bodies are visualized

as though they are piled on the bottom of their containing voxels and soils are

visualized as though they are piled on top of rigid bodies.

Figure 26: Slice of a density field and a collision field

The values associated with the density field, velocity field, force field, and

collision field at a particular point in time during the simulation are referred to

as the state of the simulation. The state of the simulation at the beginning of the

nth time step is denoted by βn, and the soil density, velocity, force, and rigid body
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density values associated with a particular voxel in βn are denoted by ρni,j,k, ~u
n
i,j,k,

~fni,j,k, and ψni,j,k, respectively, where i, j, and k are the indices of the voxel. These

values are collectively denoted by βni,j,k.

The voxel volume constraint shown in Equation 17 must be satisfied for a given

state of the simulation to be physically plausible.

∀i, j, k ∈ N, 0 ≤ ρni,j,k + ψni,j,k ≤ 1 where i < N, j < M, k < L (17)

In this equation, N , M , and L denote the resolution of the voxel grid on the x,

y, and z axes, respectively. For the voxel volume constraint to be satisfied, each

value in the soil density field, given by ρni,j,k, must be in the range [0, 1 − ψni,j,k].

If ρni,j,k > 1 − ψni,j,k for some voxel, then that voxel is occupied by more soil than

it is physically capable of containing in its available space. We refer to these

types of voxels as overflowed voxels. As we will discuss in Sections 3.2.1 and

3.2.4, overflowed voxels may exist temporarily in our simulation due to certain

constraints that are associated with a parallel, GPU-based simulation.

3.2 Simulation

The state of the simulation evolves over time to reflect the motion of the virtual

soil in a three-dimensional space. We consider three different types of motion in

our voxel-based soil simulation: projectile motion, slippage motion, and contact

motion. Quantities of falling soil, such as poured and dumped soils, experience

projectile motion due to the downward acceleration of gravity. Quantities of piled

soil, such as the soil on the ground or in the bucket of an excavator, experience

soil slippage due to the presence of unstable slopes on their surfaces. Both falling
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and piled quantities of soil experience contact motion when they are subjected to

deformation and displacement from dynamic objects and bodies.

Given the state of the simulation at the beginning of the nth time step, denoted

by βn, we determine the state of the simulation at the end of the time step, denoted

by βn+1, by applying a transformation to βn that reflects the net motion of the soil

over the given time interval. This transformation is divided into three separate

transformations that update the state of the simulation based on the projectile,

slippage, and contact motions of the soil. That is, βn is transformed to reflect the

net motion of the soil over a discrete time interval, denoted by ∆t, as shown in

Equations 18, 19, and 20.

βdef = deformation(βn,∆t) (18)

βproj = projectile(βdef ,∆t) (19)

βn+1 = slippage(βproj,∆t) (20)

In these equations, projectile, slippage, and deformation represent functions that

transform a given state of the simulation based on the projectile, slippage, and

contact motions, respectively. The intermediate states of the simulation that are

produced after the deformation and projectile transformations are denoted by βdef

and βproj, respectively.

The transformation from βn to βn+1 is split into three separate functions be-

cause it is significantly easier to develop separate software modules that transform
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the state of the simulation based on these different types of motions independently,

rather than concurrently. In our approach, we use a GPU-based advection algo-

rithm to transform the state of the simulation based on the projectile motion of

loose, poured, and falling soils. This algorithm is described in detail in the first

and second subsections of this section. In the third subsection, we describe a GPU-

based soil slippage algorithm that operates on our voxel-based representation of

soil. Lastly, in the fourth subsection, we describe our GPU-based algorithm for

transforming the state of the simulation based on soil-object interactions. Shown

in Algorithm 1 is psuedocode that demonstrates the high-level structure of our

complete algorithm.

initialize simulation;

while simulation is running do

∆t = get the elapsed time since the last iteration;

displace player-controlled rigid objects based on ∆t;

ψ = construct a collision field for the rigid objects;

{ρ, ~u, ~f} = SoilDeformation(~f , ∆t, {ρ, ~u, ~f , ψ});

{ρ, ~u, ~f} = SoilAdvection(~u, ∆t, {ρ, ~u, ~f , ψ});

~u = ~u+ ~g∆t

ρ = SoilSlippage(ρ, ∆t, ψ);

RenderSoil(ρ);

display frame;

end

Algorithm 1: High-level algorithm for voxel-based soil simulation

We discuss the soil deformation, advection, and slippage transformations in a
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different order than they are specified in Algorithm 1. We discuss these trans-

formations in the order that we recommend they be implemented based on their

complexity and importance. The force field, ~f , is utilized in the deformation

transformation and the velocity field, ~u, is utilized in the advection transformation.

These two vector fields are discussed in more detail in their respective subsections.

3.2.1 Soil Advection

We utilize an advection algorithm to displace quantities of soil in a voxel grid.

Recall from Section 3.1 that the properties recorded in our voxel-based represen-

tation are unsigned density, denoted by the density field ρ, velocity, denoted by

the velocity field ~u, direction of applied force, denoted by the force field ~f , and

rigid body density, denoted by the collision field ψ. In this subsection, we denote

the values associated with these fields at the beginning and end of the advection

transformation by βn and βn+1, respectively. In this subsection, βn+1 does not

represent the state of the simulation at the end of the nth time step, as it does in

Section 3.2. In this subsection, βn+1 represents the state of the simulation at the

end of the advection transformation. Following the general format of an advection

algorithm, specified in Equation 12 [5], the format of our algorithm is shown in

Equation 21. That is, our advection algorithm transforms βn into βn+1 based on

the state of the velocity field over a given interval of time. The collision field is

not affected by this transformation because the motion of rigid bodies is based on

user input, animation data, or a physics engine.

βn+1 = advect(~u,∆t, βn) (21)
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Our advection algorithm is designed such that the values associated with an

arbitrary voxel in βn+1, denoted βn+1
i,j,k , can be calculated in parallel for each voxel in

the grid. This algorithm is suited to GPU implementation, where a separate thread

on the GPU is dispatched to calculate and record the value of βn+1
i,j,k . Because our

algorithm is required to operate in real-time, we do not calculate the net inflow

of a particular soil property into a voxel by considering the displacement of all

voxels in the grid, as shown in Equation 16. Instead, we only consider inflows

from neighboring voxels, where a voxel is considered a neighbor of another voxel if

it is adjacent to that voxel in the grid, or if it is the same voxel. In other words,

quantities of soil are only transferred into adjacent voxels or their same voxel over

the duration of a single time step in our GPU-based advection algorithm. We

choose the resolution and size of our voxel grid such that the magnitude of any

voxel’s velocity can be reasonably restricted to not exceed the length of one voxel

at any point in time during the simulation.

Each GPU thread responsible for calculating and recording the value of βn+1
i,j,k

has exclusive writing privileges for its respective voxel in βn+1, and shared reading

privileges for the block of 27 neighboring voxels in βn. That is, each thread is

responsible for calculating the value of βn+1
i,j,k by reading and operating on values

in βna,b,c, where a, b, and c may be any combination of indices that satisfy the

constraints listed in Equation 22.

i− 1 ≤ a ≤ i+ 1

j − 1 ≤ b ≤ j + 1

k − 1 ≤ c ≤ k + 1

(22)
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The reading and writing privileges associated with a GPU thread are visualized in

2D in Figure 27. In this example, the GPU thread has exclusive writing access to

the voxel in βn+1 that has the indices i and j, and shared reading access to its 9

neighboring voxels in βn. Note that reading privileges are only granted to voxels

in βn and writing privileges are only granted to voxels in βn+1.

(a) βn (b) βn+1

Figure 27: Thread read/write privileges

We extend the advection algorithm described in Section 2.3 [16] to facilitate

the displacement of soil through a voxel grid based on projectile motion. In this

algorithm, all soil is considered “displaced”, even if it ends up in its original voxel.

We extend this advection algorithm by considering collisions amongst displaced

soil quantities and rigid bodies. A collision occurs when a displaced quantity of soil

causes the resulting state of the simulation to violate the voxel volume constraint,

given in Equation 17. That is, a soil-object or soil-soil collision occurs inside a

voxel if the combined volume of displaced soils and rigid bodies inside that voxel

exceed its volume capacity. A simple example of this scenario is illustrated in 2D
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in Figure 28. In this example, the displaced quantity of soil in the center voxel,

with indices i and j, collides with the soil in the two neighboring voxels that have

the indices (i, j − 1) and (i+ 1, j − 1).

Figure 28: Internal collision caused by displaced soil

In this example, the density of soil that collided with the soils inside these two

neighboring voxels are given by ρi,jλi,j−1(i, j) and ρi,jλi+1,j−1(i, j), respectively.

To satisfy the voxel volume constraint, these collided density values must be dis-

tributed elsewhere in the voxel grid such that they are placed in nearby voxels

that are capable of containing their volume.

The soil properties in our voxel-based representation, ρ, ~u, and ~f , are displaced

concurrently in the same operation, as shown in Equation 21, rather than inde-

pendently in separate advection operations. These properties are displaced in the

same operation because displaced soil densities may undergo motions that tem-

porarily deviate from the velocity field due to collisions. The velocity and force

properties associated with a density after collision must follow its new motion.

In our approach, voxels in βn are considered to be in a locked state if they are
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completely occupied by soil, rigid objects, or a combination of both. In this locked

state, no quantities of soil from the surrounding 26 voxels are able to flow into

the voxel over the given time interval. Displaced quantities of soil that attempt

to enter a locked voxel are simply returned to their originating voxels as inflow

with zero velocity, which we refer to as backflow. A quantity of soil inside a locked

voxel may flow out of the voxel if it has a non-zero velocity. An example of this

collision resolution technique is illustrated in 2D in Figure 29.

(a) βn (b) βn+1

Figure 29: Locked voxels

In this example, locked voxels are marked with a lock symbol. The displaced

quantity of soil that has a density value of 0.6 is returned to its originating voxel

because its outgoing soil overlaps with a locked voxel. The displaced quantity of

soil that has a density value of 0.8 has 75% of its density returned to its originating

voxel, and 25% of its density distributed into overlapping neighbor voxels. This

is because 75% of the displaced voxel’s volume overlaps with the originating voxel

and locked voxels, and 25% of the displaced voxel’s volume overlaps with unlocked

neighboring voxels. To keep the soil contained inside the voxel grid’s cubic volume

53



of space, we assume that all voxels outside the grid are in a constant locked state.

Therefore, any displaced soil quantities that cross the boundaries of the voxel grid

are returned to their originating voxels as backflow.

Shown in Equation 23 is the function used to calculate the inflow of density

into a voxel with indices i, j, and k from a voxel with indices a, b, and c. In

this equation, ρna,b,c denotes the density of the soil inside the voxel (a, b, c) at the

beginning of the advection transformation, and λi,j,k(a, b, c) denotes the fraction

of (a, b, c)’s displaced volume that overlaps with the voxel (i, j, k).

inflowi,j,k(a, b, c) = ρna,b,cλi,j,k(a, b, c) (23)

Equation 24 gives the function used to calculate the density of soil that returns

to the voxel (i, j, k) as backflow when it is displaced out of (i, j, k) into another

voxel with indices (a, b, c). That is, Equation 24 calculates the density of displaced

soil that returns to its originating voxel due to the locked or unlocked state of a

neighboring voxel. In this equation, ψna,b,c denotes the density of the rigid bodies

in a voxel with indices a, b, and c. This function assumes that (i, j, k) 6= (a, b, c)

because a voxel cannot receive backflow from itself.

backflowi,j,k(a, b, c) =

 0 : ρna,b,c + ψna,b,c < 1

inflowa,b,c(i, j, k) : ρna,b,c + ψna,b,c ≥ 1
(24)

Equations 25 and 26 are used to calculate the net inflow and net backflow, re-

spectively, for a voxel, with indices i, j, and k, from its block of 27 neighboring

voxels.
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net inflow(i, j, k) =
1∑

a=−1

1∑
b=−1

1∑
c=−1

inflowi,j,k(i+ a, j + b, k + c) (25)

net backflow(i, j, k) =
1∑

a=−1

1∑
b=−1

1∑
c=−1

backflowi,j,k(i+ a, j + b, k + c) (26)

Shown in Equation 27 is the function used to calculate the density of soil inside a

particular voxel at the end of the advection transformation.

ρn+1
i,j,k =

 net inflow(i, j, k) + net backflow(i, j, k) : ρni,j,k + ψni,j,k < 1

inflowi,j,k(i, j, k) + net backflow(i, j, k) : ρni,j,k + ψni,j,k ≥ 1
(27)

In this function, the inflow of density into a particular voxel is based on its locked

or unlocked state. If the voxel is in an unlocked state, the inflow of density into

the voxel is the net inflow received from all 27 neighboring voxels, calculated with

Equation 25. If the voxel is in a locked state, its net inflow of density is the inflow

it receives from itself, calculated with Equation 23. The net backflow of density

is added to a voxel’s inflow, as shown in Equation 27, regardless of its locked or

unlocked state.

As discussed, displaced quantities of soil also have a velocity and force property

associated with their density. We use a weighted averaging technique to calculate

the velocity and force associated with the soil inside a particular voxel in βn+1.

This technique calculates the average velocity and force that flowed into the voxel,

where more weight is assigned to the velocities and forces that entered the voxel
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with larger volumes of soil. That is, the weight assigned to each inflowing velocity

and force property is based on its associated density value. The weighted averaging

of the velocity property is shown in Equation 28, where ~un+1
i,j,k denotes the velocity

of the soil in a voxel, with indices i, j, and k, in βn+1.

~un+1
i,j,k =

m∑
a=0

~u ina ρ
in
a

m∑
a=0

ρina

(28)

The total number of inflowing soil quantities is given by m, and ~u ina and ρina denote

the velocity and density, respectively, of the ath inflowing quantity of soil. The

weighted averaging of the velocity property is identical to the weighted averaging

of the force property.

This advection algorithm introduces overflowed voxels in the voxel grid. Recall

from Section 3.1 that a voxel is overflowed if it is occupied by more soil than it is

physically capable of containing. That is, a voxel in the grid with the indices i, j,

and k is overflowed if ρi,j,k > 1− ψi,j,k. Unlocked voxels may overflow during this

advection algorithm if they receive a net inflow of soil from their neighboring 27

voxels that is more soil than they are capable of containing. Ideally, the displaced

quantities of soil would collide with one another before causing any overflows

in unlocked voxels. However, because our algorithm displaces soil quantities in

parallel on the GPU, detecting and resolving these collisions in an efficient manner

is a difficult task. To avoid this, we perform an overflow resolution process on the

GPU after every advection transformation in an attempt to produce a density

field that satisfies the voxel volume constraint. Overflow resolution techniques

redistribute overflowed densities in a voxel grid based on some heuristic. Shown in
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Figure 30 are three examples of overflow resolution heuristics that are well-suited

for resolving overflows in our voxel-based representation of soil. The upper square

indicates the state βn and the three lower squares show the results of applying

three overflow resolution heuristics to produce βn+1.

Figure 30: Overflow resolution techniques

The first heuristic distributes overflowed densities into all neighboring voxels

evenly, as shown on the left in Figure 30. The second heuristic transfers overflowed

densities upwards one voxel in the grid, as shown in the center of Figure 30. The

third heuristic transfers overflowed densities into the set of neighboring voxels that

are one level higher than the overflowed voxel, as shown on the right in Figure 30.

The density that is transferred into each of these upper voxels is determined by

associating a weight with each upper voxel. In this example, the upper voxels in

the corners receive 25% of the overflow and the upper voxel in the center receives

50% of the overflow.

The first overflow resolution heuristic is well suited to resolving overflows in
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falling quantities of soil, while the second and third heuristics are well suited to

resolving overflows in piled quantities of soil. However, it is not guaranteed that

a single pass of any of these overflow resolution techniques will produce a density

field that satisfies the voxel volume constraint. A single pass is not guaranteed to

resolve all overflows because additional overflows may be created in neighboring

voxels that receive distributed densities. Therefore, multiple passes of an overflow

resolution algorithm are performed on the GPU to increase the probability of

producing a density field containing no overflowed voxels. In our approach, we

perform 4 passes of an overflow resolution algorithm that uses the second heuristic

on the GPU after each advection transformation.

3.2.2 Body Forces

Once per time step we transform the state of the velocity field to reflect the

acceleration of soil based on body forces, such as gravity. In our approach, we

perform this transformation immediately after each advection transformation. We

calculate the accelerated velocity of the soil inside each voxel using Euler integra-

tion. If a particular voxel is not occupied by any soil, then the velocity associated

with that voxel is set to 0. Shown in Equation 29 is the function used to accelerate

a voxel’s velocity over a given time step based on gravity.

~un+1
i,j,k =

 ~uni,j,k + ~g∆t : ρni,j,k 6= 0

0 : ρni,j,k = 0
(29)

In this equation, ~uni,j,k and ~un+1
i,j,k denote the velocity of a particular voxel, with

indices i, j, and k, before and after the body force transformation, respectively.

The density of soil occupying the voxel is denoted by ρni,j,k, ~g is a downward
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gravitational acceleration vector, and ∆t is the duration of the time step.

3.2.3 Soil Slippage

Recall from Section 2.1.2 that Li et al. proposed a physics-based soil slippage

algorithm that operates on soil slices in a dynamically displaced heightmap [26].

We use this soil slippage model to facilitate the slippage of soils in a 3D density

field. However, because the height of a piled soil column cannot be sampled

directly in a density field, we instead perform slope stability analysis and soil

slippage computations on an indirect, height-based representation of the density

field. The changes made to this indirect representation are reflected in the density

field after the soil slippage model has been applied.

Once per time step, we construct a height span map that represents the state

of the density and collision fields for soil slippage computations. We refer to this

height span map as a multi-level heightfield. The multi-level heightfield is an NxL

grid of columns, where each column corresponds to a column in the voxel grid.

Each column of the multi-level heightfield is a sorted list of non-overlapping height

spans, where the height spans in a column are sorted in a bottom-up manner and

are centered in their containing voxels. The multi-level heightfield is similar to

the height span maps used by Onoue et al. [32], except it includes height spans

for all rigid objects, all soil piled on those objects, soil piled on the ground, and

falling soil. Onoue et al. used a separate height span map to record the soil piled

on each rigid object. The multi-level heightfield consists of four different types of

height spans: rigid body, piled soil, falling soil, and edge height spans.

A height span in a column of the multi-level heightfield is denoted by Hi =

{Bi, Ti, µi}, where i is the index of the height span in the column, Bi and Ti are
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the heights of its bottom and top points, respectively, and µi is an integer that

encodes the height span’s type. The height of a height span’s bottom and top

points are specified relative to the bottom of the column. Therefore, the local

height of a height span is given by Ti −Bi.

A height span in a multi-level heightfield extends through a non-empty set of

voxels in its corresponding column of the voxel grid. The top and bottom voxels

in this set contain the top and bottom points of the height span. The voxels that

lie between a height span’s top and bottom voxels are referred to as inner voxels.

Shown in Figure 31 is an example of a height span and its corresponding column of

voxels in the grid. A column of voxels associated with a height span may contain

zero, one, or more inner voxels depending on the local height of the height span.

The bottom and top voxels may be the same voxel if a height span begins and

ends in that voxel.

Figure 31: Height span in a column of voxels

The set of height spans in a column of the voxel grid are constructed in bottom-

up order by searching upwards through the voxels in that column, beginning with
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the bottommost voxel. At each voxel in this search, a set of conditions are eval-

uated to determine if a particular type of height span begins inside the voxel. If

one does not begin, then the search continues up the column to the next voxel. If

one does begin, then the height of the height span’s bottom point is calculated.

Another set of conditions are evaluated to determine if the height span ends in

that voxel. If the height span does not end, then the search continues up the

column until one of these conditions are met and the top voxel of the height span

is found. Once the top voxel of the height span is found, the height of its top point

is calculated and the height span is recorded in the multi-level heightfield. The

top voxel of the recorded height span is checked for the beginning of a different

type of height span. The search continues in this manner until the topmost voxel

in the column is processed.

Shown in Tables 1, 2, and 3 are the conditions which define the construction

of rigid body, piled soil, and falling soil height spans. In each table, a set of

conditions are provided for the bottom and top voxels of each type of height span.

These conditions are used during the upwards search to determine if a particular

voxel contains the bottom or top point of a height span. If there is a conflict and

multiple types of height spans are determined to begin inside a particular voxel,

then priority is given in the following order: piled soil, rigid body, falling soil.

Rigid Body Height Span

Voxel Condition Height (ω)

Top ψi,j,k < 1 and ψi,j+1,k ≥ 1 ψi,j,k

Bottom ψi,j−1,k ≥ 1 1− ψi,j,k

Table 1: Height span construction (rigid bodies)
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Piled Soil Height Span

Voxel Condition Height (ω)

Top

ρi,j,k < 1− ψi,j,k and ψi,j+1,k ≥ 1 ψi,j,k + ρi,j,k

ρi,j,k < 1 and ψi,j+1,k < 1 ρi,j,k

ψi,j,k > 0 and ψi,j+1,k < 1 ρi,j,k

Bottom
ψi,j+1,k ≥ 1 and ψi,j,k < 1 ψi,j,k

j = M − 1 0

Table 2: Height span construction (piled soil)

Falling Soil Height Span

Voxel Condition Height (ω)

Top
ψi,j,k > 0 0

ρi,j,k < 1 0

Bottom ρi,j,k ≥ 1 and ψi,j,k = 0 0

Table 3: Height span construction (falling soil)

In Tables 1, 2, and 3, i, j, and k are the indices of the current voxel in the

upwards search. If a bottom or top condition is true for that voxel, then that

voxel contains the bottom or top point of the respective type of height span. The

height of this point relative to the bottom of the voxel is specified next to each

condition. Equation 30 is used to calculate the height of the bottom or top point

relative to the bottom of the column.

{B, T} = M − 1− j + ω (30)

In this equation, M denotes the resolution of the voxel grid on the y-axis, j denotes

the y-index of the voxel containing the point, and ω denotes the height of the point
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relative to the bottom of its containing voxel.

Simply put, Tables 1, 2, and 3 construct height spans with the following rules

and assumptions:

• The rigid bodies in the bottom voxel of a rigid body height span are dis-

tributed at the top of the voxel.

• The rigid bodies in the top voxel of a rigid body height span are distributed

on the bottom of the voxel.

• The inner voxels of a rigid body height span are completely occupied by

rigid bodies.

• A rigid body height span must contain at least one inner voxel.

• A piled soil height span always starts at the bottom of the bottommost voxel

in the column.

• A piled soil height span always starts directly on top of a rigid body height

span.

• The inner voxels of a piled soil height span are completely occupied by soil.

• The top, bottom, and inner voxels of a falling soil height span are completely

occupied by soil.

• The top, bottom, and inner voxels of a falling soil height span contain no

rigid bodies.

Shown in Figure 32 is a visual, two-dimensional example of the rigid body,

piled soil, and falling soil height spans that are constructed in the columns of a

density field and a collision field.
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Figure 32: Height spans in a voxel grid

Two piled soil height spans in neighboring columns of the multi-level heightfield

form a soil slice if they have a positive intersection of height. The intersection of

height between two height spans is calculated using Equation 31, where Hi and

Hj are two height spans in neighboring columns.

Hi ∩Hj = min(Ti, Tj)−max(Bi, Bj) (31)

The area of a soil slice between two piled soil height spans is divided into a rect-

angular and a triangular area, similar to soil slices in a heightfield-based approach

[26]. The rectangular area in a soil slice lies in the region where there is an inter-

section of height between two neighboring height spans. That is, the top of the

rectangular area has a height of min(Ti, Tj) and the bottom of the rectangular

area has a height of max(Bi, Bj). The triangular area in a soil slice connects the
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top point of the lower height span to the highest point on the higher height span

that does not lie in the rectangular area of the next higher slice in the column.

The conceptual construction of these soil slices is shown in Figure 33.

(a) (b)

Figure 33: Slices between two piled soil height spans

In Figure 33a, the triangular area at the top of the slice forms a sloped surface

that connects the top points of the two height spans. In Figure 33b, the triangular

area at the top of the slice does not connect the top points of the two height spans

because the top point of the higher height span is included in another slice. Shown

in Equation 32 is the function used to calculate the height of the triangular area

at the top of a soil slice between two piled soil height spans.

h = min(Ti, Bj+1)− Tj (32)

In this equation, Ti is the top point of the higher height span, Tj is the top point of

the lower height span, and Bj+1 is the bottom point of the next height span in the

lower height span’s column. The slope of the soil in a slice is given by h and ∆x,
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where h is calculated with Equation 32 and ∆x is the horizontal distance between

the two height spans. The triangular quantities of soil at the top of each soil slice

are candidate for soil slippage. We use the soil slippage algorithm described in

Section 2.1.2 [26] to calculate the change in local height of a height span with

respect to one of its adjacent soil slices. The net change in local height of a piled

soil height span is the sum of the height changes in each of its adjacent soil slices.

Piled soil on the edge of a rigid object will not slide off the edge as it naturally

should if there are no piled soil height spans beyond the boundaries of the object

to receive the sliding soil. This problem is illustrated in Figure 34.

Figure 34: Missing soil slices on an edge

To fix this problem, we procedurally insert a piled soil height span that has a local

height of zero next to the bottom points of height spans that are on the edge of

a rigid object. These procedurally inserted height spans are referred to as edge

height spans. If the bottom point of a piled soil height span on the edge of a

rigid body already has another height span next to it, then no edge height span

is inserted. Shown in Figure 35 is an example of a row of height spans, and their

conceptual soil slices, in a multi-level heightfield. In this example, an edge height

span is inserted next to the bottom point of the piled soil height span on the right
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edge of the rigid object. This edge height span produces a soil slice that causes

the soil to slide off the edge of the object and enter the falling state. An edge

height span is not inserted next to the bottom point of the piled soil height span

on the left edge of the rigid object because another height span already occupies

this space.

Figure 35: Soil slices in a multi-level heightfield

A change in the local height of a piled soil height span due to soil slippage

is reflected in the density field, as shown in Figure 36. In this approach, soil

density is added or removed sequentially from the top voxel of a piled soil height

span based on the height span’s net change in local height. In the example in

Figure 36, the net change in local height of the piled soil height span is given to

be −1.85. Therefore, 1.85 is removed from the density of soil in the height span’s

column of voxels, starting from its top voxel and continuing downwards. If the

piled soil height span is increased in height, then density is added to the height

span’s column of voxels, starting from its top voxel and continuing upwards.
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Figure 36: Height changes reflected in a density field

3.2.4 Soil Deformation

Recall from Section 3.1 that a three-dimensional collision field encodes the lo-

cations of rigid bodies in a voxel grid. In the context of this thesis, rigid bodies are

3D game objects that influence the state of the simulated soil. Because these game

object’s movement are based on user input, animation data, or a physics engine,

the locations of rigid bodies in a collision field are not updated by transporting

their densities through the grid in a procedural manner similar to soil. Instead,

the collision field is reconstructed at the beginning of each time step, as shown in

Algorithm 1, to reflect the new positions of the rigid bodies in the grid after their

displacement. That is, the collision field is a temporary snapshot of the locations

of all rigid bodies in a voxel grid during a single time step.

The process of transforming a 3D, surface-based representation of an object,

such as a polygonal mesh, into a voxel-based representation is referred to as vox-

elization [10, 12]. The collision field is reconstructed each time step by voxelizing

all rigid game objects into its voxel grid. Because 3D game objects are typically
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represented in the form of a polygonal mesh, constructing a collision field directly

from these objects requires them to be voxelized based on the location and ori-

entation of each of their polygons. However, it is computationally expensive to

voxelize large sets of objects with highly detailed meshes in real-time applications.

It is more efficient, and much simpler, to voxelize 3D geometric primitives such

as spheres, ellipsoids, cuboids, cylinders, and cones. These objects are more effi-

cient to voxelize because their volume can be represented mathematically with a

density function [22]. Voxelizing a 3D object based on a density function is logi-

cally equivalent to generating voxel terrain with a density function, as described

in Section 2.2.2. In both cases, an empty voxel grid is populated with densities by

sampling and recording the value of a density function at each voxel in the grid.

Laprairie et al. proposed a set of virtual volume sampling functions, which are

3D density functions, for geometric primitives such as spheres, ellipsoids, cuboids,

cylinders, and cones [22]. In our approach, we approximate the volume of each

rigid game object with a unionized set of these geometric primitives. We are able

to construct the collision field more efficiently by voxelizing the set of geometric

primitives associated with each game object rather than their detailed meshes. A

two-dimensional example of the voxelization of geometric primitives is shown in

Figure 37. In this example, the volumes of two objects, denoted by O1 and O2,

are voxelized to produce the collision field in Figure 37b. The volume of O1 is

approximated with two cuboid primitives and the volume of O2 is approximated

with a single sphere primitive. The collision field in this example is visualized as

though densities are distributed evenly inside the space of their containing voxels.

As described in Sections 3.2.1 and 3.2.3, the collision field, denoted by ψ, is

used to detect and resolve collisions that occur when falling or sliding quantities
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(a) (b)

Figure 37: Voxelization of 3D geometric primitives

of soil come into contact with a rigid body. However, collisions also occur when

moving rigid bodies come into contact with soil. For example, the blade of a

simulated bulldozer may be used to push large quantities of soil along the surface,

or the bucket of a simulated excavator may be used to lift quantities of soil out

of the ground. These types of collisions occur when the voxel volume constraint,

specified in Equation 17, is violated as a result of a change in the collision field.

A 2D example of this type of collision is illustrated in Figure 38. In this example,

the change in position of the rigid body causes a collision in the three voxels that

each have a soil density value of 0.8. These voxels are in collision because their

combined density of soil and rigid objects exceeds a value of 1. The density of the

collided quantity of soil in any one of these voxels is given by ρi,j,k − (1 − ψi,j,k),

where i, j, and k are the indices of a collided voxel. In this example, the density

of the collided quantity of soil in each voxel containing a collision is 0.3.
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Figure 38: A moving object colliding with soil

As shown in Algorithm 1, we perform a soil deformation transformation on the

voxel grid after the collision field is reconstructed each time step. This transfor-

mation pushes collided quantities of soil through the grid based on the direction

of their applied force from contacting rigid bodies. For each voxel in the grid,

the direction of the applied force associated with the collided quantity of soil in

the voxel is denoted by ~fi,j,k, where i, j, and k are the indices of the voxel. The

soil deformation transformation is split into two separate GPU-based operations:

force application and force propagation.

The force application operation updates the direction of the applied force asso-

ciated with the collided soil in each voxel after the collision field is reconstructed.

In our approach, the direction of the force exerted on a quantity of collided soil is

assumed to be equivalent to the direction of the colliding object’s velocity. Shown

in Equation 33 is the force application function used to update the force field after

the collision field is reconstructed.
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~fn+1
i,j,k =


v̂ψi,j,k

||v̂ψi,j,k||
: ρni,j,k + ψni,j,k > 1 ∧ ψni,j,k 6= 0

~fni,j,k : ρni,j,k + ψni,j,k > 1 ∧ ψni,j,k = 0

0 : ρni,j,k + ψni,j,k ≤ 1

(33)

In this equation, ~fni,j,k and ~fn+1
i,j,k denote the direction of the applied force associated

with a particular voxel before and after the force application operation, respec-

tively. The density of the soil and rigid objects in the voxel are denoted by ρni,j,k

and ψni,j,k, respectively. The velocity of the rigid object in the voxel is denoted by

v̂ψi,j,k. Note that only overflowed voxels have a non-zero force in the force field. If

an overflowed voxel does not contain any rigid objects, then that voxel’s applied

force remains unchanged after force application.

The force propagation operation is an iterative procedure that pushes quan-

tities of collided soil through the voxel grid in the direction of the applied force.

In each iteration of this operation, collided soil quantities are transferred out of

their containing voxels into one or more neighboring voxels in the direction of the

applied force. A collided quantity of soil follows this trajectory until it reaches a

voxel in the grid where it is no longer in collision with other soil or rigid objects.

To illustrate the concept of this operation, a one-dimensional example is shown

in Figure 39. In this example, four iterations of force propagation are performed

after a force application operation. In the force application operation, a collision

between soil and rigid bodies is detected in the leftmost voxel. A collision oc-

curs in this voxel because its combined density of soil and rigid bodies exceeds a

value of 1, causing it to violate the voxel volume constraint. Therefore, a force

is applied to this voxel in the direction of the rigid body’s velocity. In each iter-

ation of the following force propagation procedure, the collided quantity of soil,

72



which in this case has a density value of 0.2, is transferred into neighboring voxels

in the direction of the applied force until it is no longer in collision. This force

propagation operation is similar to the overflow resolution techniques described in

Section 3.2.1, except collided quantities of soil are displaced based on a force field

rather than heuristics.

Figure 39: Multiple force propagation iterations

We use a modified version of our soil advection algorithm, described in Sec-

tion 3.2.1, to facilitate the displacement of collided soil quantities in three di-

mensions for a single iteration of force propagation. In this modified advection

algorithm, collided quantities of soil are displaced with their containing voxels in

the direction of their applied force. The displacing force vector is scaled to ensure

that the collided soil is completely transferred out of its originating voxel and dis-

tributed into one or more neighboring voxels. A 2D example of the displacement
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of a collided quantity of soil is shown in Figure 40.

(a) (b)

Figure 40: Displaced quantity of collided soil

In this example, the collided quantity of soil in the center voxel has a density of

0.4. The grid in Figure 40a shows the displacement of this collided soil based on

its normalized direction of applied force, denoted by ~fi,j,k. This is not an ideal

displacement because some of the collided soil overlaps with its originating voxel

and will remain in collision. The grid in Figure 40b shows the displacement of

the collided soil based on its scaled direction of applied force, denoted by ~f ′i,j,k.

This displacement of density will resolve the collisions and overflows in the center

voxel.

Equation 34 is used to calculate the scaled force vector that displaces collided

quantities of soil in our force propagation operation. In this equation, ~f ′i,j,k is the

scaled force vector, ~fi,j,k is the direction of the applied force in the force field,

and ~fi,j,kx , ~fi,j,ky , and ~fi,j,kz are the x, y, and z components, respectively, of ~fi,j,k.

Simply put, the scaled force vector is calculated by dividing ~fi,j,k by the magnitude

of its largest component.
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~f ′i,j,k =
~fi,j,k

max(|~fi,j,kx|,max(|~fi,j,ky |, |~fi,j,kz |))
(34)

As in the soil advection algorithm discussed in Section 3.2.1, the velocity and

force properties associated with a collided quantity of soil are displaced and dis-

tributed with its density. Because voxels may receive multiple inflows of collided

soil from neighboring voxels, a weighted averaging technique is used to calculate

the average direction of the applied force in a particular voxel at the end of each

force propagation iteration. That is, more weight is assigned to the forces that

enter a voxel with larger densities of collided soil. The function used to calculate

the force associated with a voxel at the end of each force propagation iteration is

shown in Equation 35.

~fn+1
i,j,k =


m∑
a=0

~f ina ρina

m∑
a=0

ρina

: ρn+1
i,j,k + ψni,j,k > 1

0 : ρn+1
i,j,k + ψni,j,k ≤ 1

(35)

In this equation, m denotes the number of collided quantities of soil that flowed

into the voxel, and ~f ina and ρina denote the force and density, respectively, of the

ath inflowing quantity of collided soil. Note that ~fni,j,k is not factored into the

calculation of ~fn+1
i,j,k because it is known that ~fni,j,k is completely propagated into

neighboring voxels. Also note that the force associated with a voxel that is not

overflowed after the distribution of density is simply set to zero.

The number of force propagation iterations performed during each time step,

denoted by α, may be increased or decreased to achieve a desired balance between

quality and performance. With a higher number of iterations performed during

each time step, the rate at which collided soil is propagated through the volume
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is increased and the quality of the physics simulation is higher. With a lower

number of iterations, the performance of the simulation is increased, but the rate

at which the soil is propagated through the volume is decreased. With a slower

propagation rate, the simulated soil may appear to compress and expand slightly

over time when it is being pushed or lifted by rigid objects. In the example in

Figure 39, the collided quantity of soil arrives at its destination voxel after four

iterations. If the number of force propagation iterations performed each time step

is less than four, then the collided soil would not reach its destination until a later

time step after more iterations have been performed. In such a case, the soil would

appear to compress when it is visualized between time steps.

3.3 Visualization

We visualize the state of the soil at the end of each time step with a GPU-

based implementation of the Marching Cubes [27] and Transvoxel [23] algorithms.

To do so, we extract a triangular mesh of the soil surface for rendering at the end

of each time step from the updated density field, denoted by ρn+1. Recall from

Section 2.2.1 that the surface threshold value, denoted by S, in an unsigned density

field is typically chosen to be the midpoint between 0 and D, given by D/2 [22].

Because the density values in ρn+1 are recorded as fractions of D, the midpoint

density value in ρn+1 is instead given by 0.5. Therefore, the mesh we extract from

the density field for rendering at the end of each time step corresponds to the

surface defined by the isovalue S = 0.5.

During the visualization process, we treat voxels in the density field as fixed

points in space. We use the Transvoxel algorithm to increase the efficiency of
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extracting and rendering the soil mesh each frame [23]. In our approach, we

partition the voxel grid into a set of cubic soil blocks, similar to terrain blocks,

and adaptively assign a level of detail to each based on its distance from the

camera. At each lower level of detail, the resolution of a soil block is halved on

each of its dimensions. The resolution of a soil block is halved on each dimension

by skipping over every second voxel during sampling. A two-dimensional example

of the reduction of voxels in a lower detail soil block is shown in Figure 41.

Figure 41: Voxel reduction in a soil block

In the example in Figure 41, a 4x4 soil block containing nine Marching Cubes

voxels is reduced to a 2x2 soil block containing one Marching Cubes voxel. The

spaces on the right and on the bottom of the lower detail block, that are shown

as not being a part of a Marching Cubes voxel, are not triangulated unless other

soil blocks are present in the grid next to these spaces. If neighboring soil blocks

are present but have different levels of detail, then the voxels in these spaces

are Transvoxel transition cells and are triangulated accordingly. The resolution

of a lower detail soil block is only reduced conceptually during the visualization

process. The physical simulation of voxel soil, as described in Section 3.2, always
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operates on the maximum resolution of the grid and does not consider assigned

levels of detail.

A limitation of visualizing the soil with the Marching Cubes algorithm is that it

produces slight, regularly spaced, vertical ridges on steep slopes. These ridges are

artefacts that are introduced by the Marching Cubes algorithm where neighboring

columns of piled soil form a slope that extends through one or more inner voxels.

A two-dimensional example of this scenario is illustrated in Figure 42, where the

surface threshold value, denoted by S, is 0.5.

Figure 42: Vertical ridge artefact

In this example, two neighboring soil columns lie on the left and right edges of

four Marching Cubes voxels, which are labeled V0 to V3 for convenience. The

sloped surface between these two columns should connect the top points of the

columns, denoted by y1 and y2, with a straight line. However, the Marching Cubes

algorithm creates a surface with a vertical ridge in voxel V2. These vertical ridges

cause shading artefacts to appear on the surface of the visualized soil, as shown
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in Figure 43. In this example, an exaggerated specular reflection term is used to

make the ridges more apparent. In Section 5.3.2, we discuss methods that could

potentially be used to remove or hide these ridge artefacts.

Figure 43: Vertical ridges on a slope of soil

The workload of triangulating a soil surface in a density field with the March-

ing Cubes and Transvoxel algorithms is offloaded to the GPU for efficiency. In our

GPU-based approach, we perform two separate operations on the GPU to trian-

gulate the soil surface in each block. The first operation triangulates the standard

Marching Cubes voxels and the second operation triangulates the Transvoxel tran-

sition cells in each block. In both operations, a separate thread on the GPU is

dispatched to perform these triangulations in parallel for each voxel or transition

cell. The triangles generated by each thread are atomically inserted into a global

triangle list for the soil block, and this triangle list is rendered using standard

polygon rendering and terrain texturing techniques.
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3.4 Implementation

In this section, we describe details related to our implementation of the pro-

posed voxel-based soil simulator. This section is divided into three subsections:

development environment, voxel grid, and computation. In the first subsection,

we specify the languages, libraries, and APIs used in our implementation. In the

second subsection, we describe the data structures used to record the state of the

voxel grid and multi-level heightfield on the GPU. In the third subsection, we

discuss details related to the GPU implementation of our proposed algorithms.

3.4.1 Development Environment

We implemented our voxel-based soil simulator using C++ and DirectX 11.

Direct3D 11 is used for real-time rendering, DirectInput and XInput are used

to read the player’s input from the keyboard, mouse, and game controllers, and

DirectCompute is used to perform general purpose computations on the GPU.

HLSL (High-Level Shading Language) is used to program shaders for the Direct3D

11 and DirectCompute pipelines. Shaders written for the DirectCompute pipeline

are referred to as compute shaders, and compute shaders are used to perform

parallel computations on generic data stored in GPU buffers and textures.

3.4.2 Voxel Grid

We record the state of the simulation in a set of 3D textures on the GPU.

Each of these textures corresponds to the state of a single density field, velocity

field, force field, collision field, or multi-level heightfield (MLH field). The reso-

lution of each texture is denoted by NxMxL. We use double buffering for the
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density, velocity, and force fields by providing two copies of each, so that they

can be transformed in parallel on the GPU with no read-write conflicts. Shown in

Table 4 is the layout and format of the 3D textures used in our implementation.

In this table, a state index of 0 indicates that the texture holds the most up-to-

date complete version of the respective field. A state index of 1 indicates that

the texture is the output of the next transformation operation for the respective

property field. The state indices are swapped between the textures of a particular

property field after each transformation is applied to that field.

Texture Tex # State Index Type

Density Field
1 0 float

2 1 float

Velocity Field
3 0 float3

4 1 float3

Force Field
5 0 float3

6 1 float3

Collision Field 7 0 float

MLH Field 8 0 float3

Table 4: 3D textures in our implementation

The multi-level heightfield is encoded in a 3D texture on the GPU, where a texel

in this texture that has the indices i, j, and k corresponds to the jth height span

in the column given by i and k. This encoding allows the multi-level heightfield

to record a maximum of M height spans in each column. If a particular column

has fewer than M height spans, the unused texels in that column are assigned a

sentinel value. Three floats are used to encode the extent and type of a height

span in a particular column of the multi-level heightfield. The first float represents

the height of the height span’s bottom point relative to the bottom of the voxel
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grid. The second float represents the height of the height span’s top point, also

relative to the bottom of the voxel grid. The third float is used to identify whether

the height span is a rigid body, piled soil, falling soil, or edge height span.

3.4.3 Computation

We implemented the algorithms proposed in Sections 3.2 and 3.3 using Di-

rectCompute. These algorithms are implemented in a set of compute shaders, as

shown in Table 5.

Compute Shader Input Textures Output Textures

Soil Generation - 2, 4, 6

Collision Field Generation - 7

Force Application 5 6

Force Propagation 1, 3, 5 2, 4, 6

Soil Advection 1, 3, 5 2, 4, 6

Heightfield Generation 1, 7 8

Soil Slippage 1, 8 2

Marching Cubes 1 -

Transvoxel 1 -

Table 5: Compute shaders in our implementation

In this table, the input and output textures associated with a particular compute

shader are shown using the texture numbers specified in Table 4. The Soil Gen-

eration and Collision Field Generation shaders have no input textures and the

Marching Cubes and Transvoxel shaders have no output textures. The input to

the Soil Generation shader is a density function that generates an initial collection

of soil. The input to the Collision Field Generation shader is a set of geometric

primitives corresponding to the rigid objects that are to be voxelized. The outputs
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of the Marching Cubes and Transvoxel shaders are buffers of triangles that store

the surface mesh in a particular block of the density field. In our implementation,

we perform the application of gravity, as described in Section 3.2.2, at the end of

the Soil Advection shader.

We take advantage of DirectCompute’s thread synchronization and memory

sharing functionalities to increase the run-time efficiency of our Force Propaga-

tion and Soil Advection compute shaders. These compute shaders calculate inflows

by sampling the information contained in the set of 27 neighboring voxels in the

grid. In the näıve implementation, each thread performs all 27 texture samples se-

quentially and shares no information with neighboring threads that perform many

of these same samples. In our implementation, we greatly reduce the number

of redundant texture samples by organizing threads into 4x4x4 groups. At the

beginning of each thread group’s execution, the workload of sampling the 6x6x6

block of voxels surrounding and including the group is distributed amongst the

threads. Each thread samples its designated set of voxels and records their rel-

evant information, such as density, velocity, and force, in group shared memory.

Once all threads have sampled and recorded the information related to their des-

ignated voxels, the threads calculate inflows by reading information about their

neighboring voxels from group shared memory. A similar method is used to reduce

the number of redundant density samples in the Marching Cubes shader.
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4 Results

In this chapter, we present visual and experimental results that demonstrate

the novelty, performance, practicality, and scalability of our proposed voxel-based

soil simulation system. In the first section, we present screenshots that showcase

the visual quality, physics, and deformability of the soil in our simulator. We

also identify the visual effects shown in these screenshots that are possible due

to a voxel-based approach. In the second section, we present the results of the

experiments we conducted to test the performance and scalability of our simulator.

Based on these results, we comment on the practicality and deployability of our

proposed soil simulation system in the games and simulation industries. In the

third section, we compare and contrast the results of our voxel-based approach

with previous approaches.

4.1 Visual

This section is divided into three subsections: soil slippage, soil-object interac-

tion, and soil-terrain interaction. In the first subsection, we present screenshots

that demonstrate the slippage of soil in our simulator. In the second subsection,

we present screenshots that showcase the behaviors of the simulated soils when

influenced by static and dynamic objects. In the third subsection, we present

screenshots that show interactions between the simulated soil and static, voxel-

based terrains.

4.1.1 Soil Slippage

Shown in Figure 44 are three screenshots that demonstrate the slippage of a
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column of soil in our voxel-based soil simulator.

(a) (b) (c)

Figure 44: Slippage of a soil column

Figure 44a shows the initial state of the soil, Figure 44b shows an intermediate

state of the soil as it is experiencing soil slippage, and Figure 44c shows the state

of the soil once it has reached equilibrium. At equilibrium, the soil forms a cone

with a circular base. The angle of the cone’s slope, measured from the horizontal

plane, is referred to as the angle of repose [9].

Recall from Section 2.1.2 that the slope at which a quantity of soil settles

into equilibrium is based on soil properties such as the angle of internal friction,

denoted by φ, the coefficient of cohesion, denoted by c, and the specific weight,

denoted by γ. Shown in Figure 45 are five examples of settled soil columns that

are composed of soils with different angles of internal friction. These angles were

selected because the angle of internal friction typically ranges from 20◦ (loose

soils) to 40◦ (dense soils) [2, 34]. In these examples, the coefficient of cohesion and

specific weight properties are constant, with c = 0.0 t/m and γ = 2.0 t/m2.

(a) φ = 20◦ (b) φ = 25◦ (c) φ = 30◦ (d) φ = 35◦ (e) φ = 40◦

Figure 45: Varying the angle of internal friction (φ)
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As expected, as the angle of internal friction increases from 20◦ to 40◦, the soil

reaches a state of equilibrium faster and has a higher angle of repose because the

frictional component of the soil’s shear strength is increased.

Shown in Figure 46 are five examples of settled soil columns that are composed

of soils with different coefficients of cohesion. The angle of internal friction and

specific weight properties are constant, with φ = 20◦ and γ = 2.0 t/m2. The coef-

ficients of cohesion shown in this example were selected because typical cohesion

coefficients range from 0.0 t/m to 2.0 t/m for soils with φ = 20◦ [2, 26].

(a) c = 0.0 (b) c = 0.5 (c) c = 1.0 (d) c = 1.5 (e) c = 2.0

Figure 46: Varying the coefficient of cohesion (c)

As with the previous example, the soil reaches a state of equilibrium faster and

has a higher angle of repose as the coefficient of cohesion increases from 0.0 t/m

to 2.0 t/m. These increases occur because the non-frictional, cohesive component

of the soil’s shear strength increases with c.

Shown in Figure 47 are five examples of settled soil columns that are composed

of soils with different specific weight properties. The specific weight of soil typically

ranges from 1.8 t/m2 (dry sand) to 2.1 t/m2 (loam) [2, 26]. In this example, we

display soils with a wider range of specific weight values so that the variations are

more apparent. The coefficient of cohesion and angle of internal friction properties

are constant, with c = 0.5 t/m and φ = 20◦. As expected, as the specific weight

increases from 1.0 t/m2 to 3.0 t/m2, the soil takes longer to settle and has a lower

angle of repose due to the increased shear stress that it experiences.
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(a) γ = 1.0 (b) γ = 1.5 (c) γ = 2.0 (d) γ = 2.5 (e) γ = 3.0

Figure 47: Varying the specific weight (γ)

The examples in Figures 44 to 47 show that our simulator achieves goals 2

and 4 given in Section 1.1 (“The system should be capable of simulating several

types of soils with varying cohesion, friction, and weight properties” and “unstable

slopes on the surfaces of soils should cause the soil to slide in a physically accurate

manner based on the type of soil that is being simulated”). Shown in Table 6

are typical angle of internal friction, coefficient of cohesion, and specific weight

parameters for various types of soils [2, 26].

Soil Type φ (degrees) c (t/m) γ (t/m2)

Dry Sand 26− 33 0 1.9− 2.0

Sandy Loam 14− 26 0− 2.0 1.8− 2.0

Loam 10− 28 0.5− 5.0 1.8− 2.1

Table 6: Soil parameters
(Taken from Li et al. [26])

The simulated soils shown in the remainder of this section use parameter values

that correspond to the “dry sand” soil type. A suitable texture is used to render

the mesh of the simulated sand.

4.1.2 Soil-Object Interaction

Shown in Figure 48 are three screenshots that demonstrate the slippage of
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a column of soil that is dropped on a stationary block in our voxel-based soil

simulator.

(a) (b) (c)

Figure 48: Column of soil falling on a block

In this example, the dropped soil is initially above the block, as shown in Fig-

ure 48a. Some of the soil falls directly to the ground, some lands on the block,

and some pours over the edge of the block, as shown in Figure 48b. The soil piled

on the block is connected to the soil on the ground with a continuous surface, as

also shown in Figure 48b. The soil above the block experiences soil slippage along

this surface, and off the edges of the object, until it reaches a state of equilibrium.

Eventually the soil separates and settles into two piles, one above the block and

one on the ground around the block, as shown in Figure 48c. Notice in Figure 48c

that some of the soil on the ground is pressed up against the sides of the block.

The steep slopes of soil formed against the sides of the block do not experience

soil slippage due to the support of the block.

As expected from the use of the Marching Cubes algorithm, some slight ridges

occur on the rendered surface of the soil, as shown in Figure 48b. Recall from
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Section 3.3 that these ridges are artefacts that are introduced where neighboring

columns of piled soil form a slope that extends through one or more inner voxels.

That is, these artefacts occur on the surface of the soil where the surface has a

steep slope. These artefacts become less apparent as the slope decreases over time

due to soil slippage, as shown in Figure 48c.

Figure 49 shows the slippage of a large column of soil when it is dropped on

multiple blocks with varying heights. In this example, we show the mesh of the

soil rendered normally, in Figure 49a, and in wireframe, in Figure 49b.

(a) Normal Rendering (b) Wireframe Rendering

Figure 49: Soil on multiple blocks

The wireframe rendering is provided to highlight the seamless connectivity between

the piles of soil on top of the blocks and the soil on the ground. This example,

along with the example in Figure 48, demonstrates that we are able to have an

arbitrary number of separated and connected soil piles at varying levels due to

the use of a voxel grid. An effect such as this has not been possible with previous

heightfield and particle-based approaches for real-time applications.

Shown in Figure 50 is a rigid block pushing a large quantity of soil across
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the surface of a soil-filled landscape. In this example, the moving block creates a

path through the soil. The steep slopes on the edges of this path experience soil

slippage until the deformed soil behind the block reaches a state of equilibrium.

Figures 50a, 50b, and 50c show successive views of the block pushing a mound of

soil along the surface of the landscape. Figure 50d shows the path that is created

in the soil after the block has completely passed through it.

(a) (b)

(c) (d)

Figure 50: Soil pushed by a block

Shown in Figure 51 is a flat block digging and lifting a large quantity of soil out

of the ground. In this example, the block digs into the soil at an arbitrary location,

as shown in Figures 51a and 51b, slides under the soil, as shown in Figure 51c,
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and scoops up a large quantity of soil, as shown in Figure 51d. Some of the soil

that is lifted out of the ground slips off the edges of the block and rejoins the soil

on the ground, as also shown in Figure 51d. Because the static, loose, and falling

soil in the simulation is represented in the same voxel-based data structure, the

rendered surface of the soil always maintains a consistent appearance, regardless

of the soil’s state.

(a) (b)

(c) (d)

Figure 51: Soil lifted by a block

The examples in Figures 50 and 51 show that our voxel-based soil simulation

system achieves goal 3 given in Section 1.1 (“Player-controlled objects should be

capable of excavating and deforming the simulated soil in a manner that is as
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physically realistic as done in previous approaches”). That is, the soil in our

simulator can be deformed, displaced, excavated, and piled at arbitrary locations

in the three-dimensional environment.

4.1.3 Soil-Terrain Interaction

Figure 52 gives two screenshots that showcase the behavior of the simulated

soil when it is poured on a chunk of three-dimensional, voxel-based terrain. We

achieve this effect by constructing a collision field with a terrain density function

[14], as described in Section 2.2.2, as opposed to a set of rigid body volumes, as

described in Section 3.2.4. The terrain mesh is extracted from the collision field

with the Marching Cubes [27] and Transvoxel [23] algorithms, and rendered with

a suitable, rock-like texture.

(a) (b)

Figure 52: Soil on three-dimensional terrains

As shown in Figures 52a and 52b, the soil in our simulator can be piled on top

of complex, three-dimensional surfaces due to its voxel-based representation. Fig-

ure 52a shows piles of soil at arbitrary locations on the landscape and Figure 52b

shows a portion of the simulated soil sliding down a steep, complex slope on the
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surface of a voxel-based terrain.

4.2 Performance

We conducted a set of experiments to test the performance and scalability of

our voxel-based soil simulator. We performed these experiments on a computer

with a 3.4GHz Intel Core i7-4770 CPU, 24GB of memory, a 2GB AMD Radeon R9

270 GPU, and the Windows 8.1 operating system. As mentioned in Section 3.4.1,

our simulator is implemented using C++, DirectX 11, and HLSL. We use Visual

Studio 2012 as the integrated development environment for the simulator.

The performance of our simulator is affected by the resolution of the voxel grid

that is used to track the simulated soil. With a higher resolution voxel grid, the

quality of the simulation is increased, the surface of the simulated soil is more

detailed, and larger bodies of soil can be simulated. However, more operations are

required at each time step because there are more voxels to process. Therefore,

the performance of the simulation is decreased. Shown in Figure 53 is a clustered

bar graph that visualizes the maximum, average (mean), and minimum frame

rates of our voxel-based soil simulator when voxel grids with various resolutions

are used. The resolutions used in this experiment follow the format NxNxN ,

where N is the number of voxels along each dimension of the grid. The frame

rates for each resolution were recorded over 5 separate runs, where each run was

a 30 second simulation of soil being pushed along the surface by a rigid block.

During this experiment, the simulator was configured to perform 4 iterations of

force propagation during each time step. The simulated soil had the following

properties: φ = 25◦, c = 0.0 t/m, and γ = 2.0 t/m2.
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Figure 53: Frame rate versus resolution (1)

The graph in Figure 53 shows that our simulator achieves goal 6 given in

Section 1.1 (“The system should operate in real-time with a minimum frame rate

of 60 frames rendered per second”) when a voxel grid with a resolution of 56x56x56,

64x64x64, or 72x72x72 is used. The simulator operates close to, but slightly below,

60 frames per second when an 80x80x80 voxel grid is used. To achieve a minimum

frame rate of 60 frames per second with higher resolution voxel grids, a faster

GPU could be used or other parameters could be adjusted.

Shown in Figure 54 is a scatter plot that shows the average time, in millisec-

onds, that our simulator took to render a frame of animation during the previous

experiment. This graph shows the relationship between milliseconds per frame,

denoted by t, and number of voxels, given by N3 and denoted by n. According

to this graph, the average time per frame increases linearly with the number of

voxels. This linear relationship suggests that every voxel in the grid takes approx-

imately the same amount of time to process during a time step, regardless of the
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voxel grid’s resolution.

Figure 54: Time per frame versus number of voxels

By applying simple linear regression, we can determine the equation of the linear

trend line shown in Figure 54. That is, we can determine an equation that ap-

proximates the average time needed to render a single frame of animation for a

voxel grid with any given number of voxels. This equation is given in Equation 36,

where n is the number of voxels in the grid and t is the average time per frame in

milliseconds.

t = 2.4× 10−5n+ 4.3 where n ≥ 0 (36)

In this equation, the slope of the linear trend line is 2.4 × 10−5 ms/voxel and

its y-intercept is 4.3 ms. The slope is the average time, in milliseconds, that

our simulator takes to process a single voxel for a frame of animation. The y-

intercept is the average time per frame that our simulator takes to perform all

other operations that are separate from this algorithm. The y-intercept is also

referred to as the overhead of the simulation.
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Shown in Figure 55 is a scatter plot that highlights the trend of the average

frame rate as the resolution was increased during the previous experiment.

Figure 55: Frame rate versus resolution (2)

Because the average frame rate is a reciprocal of t, given by 1000 ms/s
t

, and n = N3,

the equation of the trend line shown in Figure 55 can be derived from Equation 36,

as shown in Equation 37. That is, Equation 37 approximates the average frame

rate of the simulation, in frames per second, for any given value of N .

FPS =
1000

2.4× 10−5N3 + 4.3
where N ≥ 0 (37)

Shown in Figure 56 is a clustered bar graph that visualizes the maximum,

average, and minimum frame rates of our voxel-based soil simulator when various

numbers of force propagation iterations, denoted by α, are performed during each

time step. As in the previous experiment, the frame rates were recorded over 5

separate runs, where each run was a 30 second simulation of soil being pushed

along the surface by a rigid block. During this experiment, a 72x72x72 voxel grid

was used and all other parameters were the same as for the previous experiment.
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Figure 56: Frame rate versus force propagation iterations

The graph in Figure 56 shows that our simulator achieves a minimum frame

rate of 60 frames per second when 1, 2, or 4 iterations of force propagation are

performed during each time step. As mentioned, a lower number of iterations

may be used to achieve a higher frame rate, but, the quality of the simulation is

lowered due to the reduced rate at which collided soil is propagated through the

grid. If the number of force propagation iterations performed each time step is

too low, the simulated soil may appear to compress temporarily while it is being

pushed or lifted by rigid objects.

Shown in Figure 57 is a scatter plot that visualizes the average time, in millisec-

onds, that our simulator took to render a single frame of animation for each number

of force propagation iterations during the previous experiment. This graph shows

that the average time per frame increases linearly with the number of force prop-

agation iterations performed during each time step. This increase occurs because

a single iteration of the force propagation procedure contains a fixed number of

operations when a fixed-resolution voxel grid is used. Therefore, the time needed
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to perform all force propagation operations during a time step increases linearly

as α is increased.

Figure 57: Time per frame versus force propagation iterations

By applying simple linear regression, we can determine the equation of the linear

trend line shown in Figure 57. That is, we can determine an equation that approx-

imates the average time needed to render a single frame of animation for any given

value of α. This equation is given in Equation 38, where α is the number of force

propagation iterations performed during each time step and t is the approximate

time, in milliseconds, per frame.

t = 1.17α + 8.95 where α ≥ 0 (38)

In this equation, the slope of the line is 1.17 ms/iteration and its y-intercept is

8.95 ms. The slope is the average time, in milliseconds, that our simulator takes

to perform a single iteration of the force propagation procedure when a 72x72x72

voxel grid is used. The y-intercept is the average time per frame that our simulator

takes to perform all other operations. Equation 39 is used to calculate the average
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frame rate of the simulation given the number of force propagation iterations

performed during each frame.

FPS =
1000

1.17α + 8.95
where α ≥ 0 (39)

By scaling the resolution of the voxel grid or adjusting the number of force

propagation iterations performed during a time step, the person running the sim-

ulation should be able to find a desirable balance between quality and performance

for a wide variety of scenarios. Because of this flexibility, our simulator is suited

to execution on a wide variety of computers with low, medium, and high-end

GPUs. Furthermore, the linear relationships between the resolution and the time

per frame and between the number of iterations and the time per frame also show

that our simulator achieves goal 5 given in Section 1.1 (“The system should be

robust and scalable, such that it is capable of running efficiently on computers

with various consumer level GPUs”). Because our proposed voxel-based soil sim-

ulation system operates in real-time and is robust and scalable, it is suited to be

incorporated into computer games, video games, simulation systems, and virtual

reality systems.

4.3 Comparison

As discussed in Section 2.1.1, Sumner et al. and Li et al. developed models

of soil based on dynamically displaced heightmaps [26, 38]. The soil slippage

model proposed by Sumner et al. is a heuristic approach with empirically derived

constants [38]. The approach of Li et al. is physics-based and derives from the

Mohr-Coulomb failure criterion [9, 26]. The approach of Li et al. is more accurate
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than that of Sumner et al. because it is capable of simulating the slippage of differ-

ent types of soils based on their internal friction, cohesion, and weight properties.

Because our voxel-based approach implements the soil slippage model proposed by

Li et al., we achieve similar results, as shown in Section 4.1.1. However, we use a

multi-level heightfield, rather than a two-dimensional heightfield, for soil slippage

computations. Therefore, our approach is capable of simulating the slippage of

soil between an arbitrary number of connected soil piles at various levels, as shown

in Figures 48 and 49. The heightfield-based approaches of Li et al. and Sumner et

al. are capable of operating in real-time [26, 38], as is our voxel-based approach,

as shown in Section 4.2.

In addition to proposing a heuristic soil slippage model, Sumner et al. proposed

a method for simulating the compaction and subtle deformation of sand and soil-

filled landscapes [38]. In their approach, the soil on the ground is either compacted

downwards, based on a compaction ratio, or displaced horizontally when impacted

by a rigid body model or character. This compaction and displacement of soil

results in the creation of impressions, such as footprints and tire tracks, on the

surfaces of virtual landscapes. In our approach, tracks are created on the surface

of the soil when rigid objects push a quantity of soil along the surface, as shown

in Figure 50. However, we do not model the compaction of soils based on vertical

impacts. Therefore, the approach of Sumner et al. is more accurate than our

approach when modeling subtle deformations on the surfaces of sand and soil-

filled landscapes.

Bell et al. and Zhu et al. proposed particle-based approaches that model bodies

of sand and soil as systems of rigid, spherical particles [3, 42]. Because the simu-

lated particles move independently and are not constrained by a two-dimensional
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grid, the topology of the soil is able to evolve freely and form complex, three-

dimensional structures. As shown in Figures 48, 49, and 52, the simulated soils in

our voxel-based approach are also capable of forming complex, three-dimensional

surfaces due to the 3D nature of the voxel grid. However, the surface of the soil in

our approach is represented with a smooth, continuous mesh. In the particle-based

approaches of Bell et al. and Zhu et al., the surface of the soil is not continuous

because each spherical particle is rendered independently with a separate mesh.

Furthermore, our approach operates in real-time, as shown in Section 4.2, unlike

the approaches of Bell et al. and Zhu et al. [3, 42]. For example, while simulating

an hourglass containing approximately 100, 000 spherical particles, the approach

of Bell et al. took an average of 3.18 minutes to render each frame of animation [3].

While simulating the slippage of a body of soil containing approximately 270, 000

particles, the approach of Zhu et al. took approximately 6 seconds per frame [42].

Holz et al. proposed a hybrid approach that uses a two-dimensional heightfield

to represent the soil on the ground, in its generally static state, and a particle

system to represent loose soil, in its highly dynamic state [18]. In their approach,

loose soils are the soils on the ground surface that are being pushed, cut, or carved

horizontally by a rigid object. That is, the soil in their simulation is fixed on the

ground surface and cannot be excavated, lifted, or poured, as can be done in

our voxel-based approach, as shown in Figure 51. Furthermore, the soil in their

simulation cannot be piled on top of complex, three-dimensional surfaces due to

the use of a two-dimensional heightfield. The approach of Holz et al. significantly

reduces the number of particles required to achieve a realistic simulation because

large scale features are modeled with the efficient heightfield-based method, while

small scale, highly dynamic features are modeled with the better-suited particle-
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based approach. Like us, Holz et al. use the soil slippage model proposed by Li

et al. [26] to simulate the slippage of the soil grid [18]. However, their approach

models the compaction of soils based on vertical impacts [18]. Therefore, their

approach is capable of simulating subtle deformations, such as footprints and tire

tracks, on the surfaces of sand and soil-filled landscapes in a manner similar to

Sumner et al. [38]. As mentioned, we do not model the compaction of soils in our

voxel-based approach.

Onoue et al. proposed a hybrid approach that uses two-dimensional height-

fields, height span maps, and particle systems [32]. A two-dimensional heightfield

is used to model the soil on the ground, height span maps are used to model the soil

piled on top of objects, and a particle system is used to model falling quantities of

soil. The height span maps are used to represent the surfaces of soils piled on top

of concave objects with complex, three-dimensional surfaces. A height span map

is similar to our multi-level heightfield, but our multi-level heightfield represents

the complete state of the soil in the simulation, whereas a height span map, as

used by Onoue et al., represents the surface of the soil resting on a single object

[32]. Because the soil on the ground, the soil piled on objects, and the falling soil

are all represented in separate data structures, Onoue et al. are not able to achieve

seamless connectivity between the soils on the ground and connecting soils on top

of objects. However, we achieve this seamless connectivity in our voxel-based ap-

proach, as shown in Figures 48 and 49, because the complete state of the soil is

represented in a single data structure. Furthermore, the soil slippage model used

by Onoue et al. is based on the heuristic approach of Sumner et al. [38]. Therefore,

unlike our approach, it is not capable of simulating the slippage of different types

of soils based on their internal friction, cohesion, and weight properties.
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5 Conclusions and Future Work

In this chapter, we devote a section to each of the following: review, conclusions

and future work. In the first section, we provide a brief review of the body of

this thesis. In the second section, we present our conclusions and discuss the

contributions of our research. In the third section, we describe research that could

be performed in the future to continue the development of the work presented in

this thesis.

5.1 Review

The research presented in this thesis is oriented towards the development of

a practical, real-time, graphical simulation of sands and soils. Simulating sands

and soils in a real-time computer graphics application is challenging due to the

fine-grained and highly dynamic nature of the materials. For example, footprints

are left in the sand after someone walks along a beach and mounds of soil can

be dug out of the ground and displaced in the environment with rigid tools and

machinery. For this research to achieve its desired level of realism in its sim-

ulation, the surfaces of sand and soil-filled landscapes should react and deform

naturally when excavation and alteration activities are performed by the player at

arbitrary locations. Furthermore, steep slopes created on the surfaces of deformed

soils should slip naturally based on the type of soil being simulated. For the soil

simulation system to be suited for deployment in computer games, video games,

simulations systems, and virtual reality systems, it should operate in real-time

with a minimum frame rate of 60 frames rendered per second.

In our approach, a three-dimensional voxel grid is used to track the motion
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and evolution of a quantity of soil in a three-dimensional space. The simulated soil

in a voxel grid is displaced over time based on three types of motion: projectile

motion, slippage motion, and contact motion. We adapted a voxel-based fluid

advection algorithm [16] to facilitate the displacement of falling soils based on

projectile motion. We adapted a heightfield-based soil slippage algorithm [26] to

simulate the slippage of soils in our voxel-based representation. We apply this soil

slippage algorithm to an indirect, multi-level heightfield representation of the soil

instead of a voxel-based representation. The voxel-based representation is updated

afterwards to reflect the changes made to the multi-level heightfield. The rigid

bodies in the environment are voxelized into the volumetric grid of the soil each

frame to facilitate the detection and resolution of per-voxel collisions between soil

and rigid bodies. Our algorithms for displacing soil in a voxel grid are designed

to operate in parallel on current GPUs. The soil is visualized each frame by

extracting a surface mesh from the voxel grid with a GPU-based implementation

of the Marching Cubes [27] and Transvoxel algorithms [23].

An empirical evaluation of our GPU-based implementation shows that our

proposed approach is capable of simulating complex, three-dimensional soil-object

and soil-terrain interactions, as well as the slippage of various types of sands and

soils. More specifically, this evaluation shows that, due to the use of a voxel

grid, the soil in our simulation can be piled on top of objects and terrains with

complex, three-dimensional surfaces. Furthermore, it is shown that the soil can be

pushed, excavated, lifted, and poured at arbitrary locations based on interactions

with player-controlled objects. It is also shown that our voxel-based approach

is capable of representing and simulating an arbitrary number of connected and

separated soil piles at multiple levels.
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We conducted a set of experiments to test the performance and scalability of

our GPU-based implementation of the proposed algorithms. These experiments

show that our approach is capable of operating in real-time with a wide variety

of voxel grid resolutions. For example, it is shown that our simulator runs at

approximately 74 frames per second when a grid containing 373, 248 voxels is

used. It is also shown that our simulator runs at approximately 58 frames per

second, which is slightly below our goal of 60 frames per second, when a voxel grid

containing 512, 000 voxels is used. When a voxel grid containing over one million

voxels is used, our simulator runs at approximately 31 frames per second. In these

experiments, it is shown that the average time our simulator takes to render a

single frame of animation increases linearly with the number of voxels in the voxel

grid. Similarly, the average time per frame increases linearly with the number of

force propagation iterations performed during each time step.

Because the soil slippage algorithm used in our approach is based on the algo-

rithm proposed by Li et al. [26], we achieve similar results, including being able

to simulate the slippage of various types of soils based on their internal friction,

cohesion, and weight properties. This soil slippage algorithm is an improvement

over the heuristic approaches of Sumner et al. [38] and Onoue et al. [32] because it

models the underlying physics of soil movement. However, Sumner et al. and Holz

et al. proposed methods for simulating soil compaction [18, 38], which is a behavior

of soil that we do not model in our approach. Due to the three-dimensional na-

ture of a voxel grid, our approach is able to simulate bodies of soils with complex,

three-dimensional surfaces, similar to previous particle-based approaches [3, 42].

However, these particle-based approaches are not suited for simulating large bod-

ies of soil in real-time. Furthermore, the surfaces of particle-based soils are not
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continuous because each particle is rendered independently with a separate mesh.

The multi-level heightfield used in our approach is similar to the height span maps

used by Onoue et al. [32], but our multi-level heightfield represents the complete

state of the soil. Because of this representation, we are able to simulate the slip-

page of soil along slopes that connect soil on the ground to soil above objects.

5.2 Conclusions

This thesis provides a novel, voxel-based approach to simulating sands and

soils on the GPU in real-time computer graphics applications. This soil simulation

system is practical, robust, and scalable. Therefore, it suited for incorporation into

computer games, video games, simulation systems, and virtual reality systems. To

our knowledge, a complete, voxel-based approach to simulating sands and soils has

not been presented previously in literature.

Due to the three-dimensional nature of a voxel grid, our approach is capable of

simulating various effects that are not possible in previous real-time approaches.

These effects include the following:

• Sands and soils piled on the surface of complex, three-dimensional, voxel-

based terrains.

• Smooth, seamless surfaces between soil piled on the ground and soil piled

on top of objects.

• Arbitrary numbers of connected and separated soil piles at various levels.

• Consistent, mesh-based appearance of piled, loose, and falling soils.
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However, our proposed approach does not simulate all characteristics and behav-

iors of soils that are modeled in previous approaches. For example, we do not

model the compaction of soils based on impacts with rigid bodies. Furthermore,

soils piled on a moving object do not move uniformly with the object because we

do not consider the frictional forces between contacting bodies of soil and rigid

objects. This limitation is discussed in more detail in Section 5.3.1. Because there

are characteristics and behaviors of soils that we do not model in our approach,

the research presented in this thesis leaves future research opportunities that may

lead to more realistic simulations.

Overall, we have made the following contributions by the research presented

in this thesis:

• We introduced a novel, voxel-based representation of sands and soils that

represents a quantity of soil in a three-dimensional grid.

• We presented a voxel volume constraint, and novel methods for satisfying

this constraint during a GPU-based simulation.

• We adapted a fluid advection algorithm to facilitate the displacement of soil

density in a voxel grid in parallel.

• We provided a set of algorithms for resolving density overflows in a voxel

grid on the GPU.

• We adapted a heightfield-based soil slippage algorithm to operate in parallel

on piles of soil at multiple levels in a voxel grid.

• We introduced a novel, parallel algorithm for propagating quantities of soil

through a voxel grid based on collisions with rigid objects and bodies.
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• We presented the first GPU-based implementation of the proposed algo-

rithms.

• We presented the first empirical evaluation of the parallel approach imple-

mented on the GPU.

In Section 1.1, we listed a set of goals for the research presented in this thesis. For

convenience, these goals are listed again below:

1. A dynamic terrain rendering system should be developed that produces re-

alistic renderings and simulations of sand and soil-filled landscapes in a real-

time computer graphics application.

2. The system should be capable of simulating several types of soils with varying

cohesion, friction, and weight properties.

3. Player-controlled objects should be capable of excavating and deforming the

simulated soil in a manner that is as physically realistic as done in previous

approaches.

4. Unstable slopes on the surfaces of soils should cause the soil to slide in a

physically accurate manner based on the type of soil that is being simulated.

5. The system should be robust and scalable, such that it is capable of running

efficiently on computers with various consumer level GPUs.

6. The system should operate in real-time with a minimum frame rate of 60

frames rendered per second.

As demonstrated in Chapter 4, all of these goals were achieved.
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5.3 Future Work

In this section, we describe potential research that could be performed to fur-

ther the development of the ideas presented in this thesis. We devote a subsection

to each potential research opportunity: soil on moving objects, removal of ridge

artefacts, compaction and consolidation, and moisture content. In the first subsec-

tion, we discuss possible ways of overcoming a limitation of our approach related

to the displacement of soil resting above moving objects. In the second subsection,

we describe a potential approach to removing the vertical ridge artefacts that ap-

pear on the surfaces of soils with steep slopes. In the third subsection, we discuss

the compaction and consolidation of soils, which is a behavior of soil that we do

not model in our proposed approach. Lastly, in the fourth subsection, we briefly

discuss the relationship between a quantity of soil’s moisture content and its shear

strength. We also describe a potential method for simulating bodies of soil with

varying moisture contents.

5.3.1 Soil on Moving Objects

To extend this research to allow the handling of soil piled on moving objects,

a method could be devised to facilitate the horizontal displacement of soils rest-

ing on rigid objects or bodies. In our approach, the soil above an object slides

frictionlessly off the edges of the object when the object has a horizontal motion,

as shown in Figure 58. The soil slips off the edges of the object because we do

not model the frictional forces that occur between contacting bodies of soil and

rigid objects. Figure 58a shows a pile of soil resting above a rigid object. The

soil above this object was lifted out of the ground beneath the object, leaving a
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moderately sized hole. Figures 58b, 58c, and 58d show successive views of the

rigid object moving horizontally away from the player’s viewpoint. Figures 58b

and 58c show the soil above the object sliding and falling off the edge of the object

as the object moves away from the viewpoint. Figure 58d shows the soil rejoined

with the ground, such that the hole shown in Figure 58a is refilled.

(a) (b)

(c) (d)

Figure 58: Soil sliding off a frictionless block

In previous approaches, a separate data structure is used to represent the soil

piled on top of each object in the simulation. That is, the soil on an object is

represented in the local space of that object. Therefore, as the object moves,

the soil in its respective data structure moves with it. However, because our
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approach uses a single, voxel-based data structure to represent the complete state

of the soil, an alternative method should be developed to facilitate the horizontal

displacement of soils resting on moving, rigid objects.

5.3.2 Removal of Ridge Artefacts

In our approach, slight, regularly spaced, vertical ridges occur on the surfaces

of soils that have steep slopes, as discussed in Section 3.3. These ridges cause

shading artefacts to appear on the surfaces of soils, thereby reducing the visual

quality and naturalness of the simulation. Continuing the development of this

research, a method could be devised to hide or eliminate these vertical ridges.

One possible approach to eliminating these vertical ridges is to modify the values

in the density field, before the mesh extraction process, such that the Marching

Cubes algorithm produces a desirable surface with no ridges. A two-dimensional

example of this modification is shown in Figure 59.

(a) Unmodified (b) Modified

Figure 59: Eliminating vertical ridges
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In this example, two columns of soil lie on the left and right edges of four Marching

Cubes voxels. The top points of these two columns are denoted by y1 and y2,

respectively. Figure 59a shows the surface that the Marching Cubes algorithm

creates between the two columns of piled soil in an unmodified density field. This

created surface contains a vertical ridge artefact. Figure 59b shows a modified

version of the density field that causes the Marching Cubes algorithm to produce

a smooth, desirable surface between the two soil columns. That is, in the modified

density field, the extracted surface between the two soil columns has a slope that

connects the points y1 and y2 with a straight line. If a method was devised for

producing a modified density field such as this before the mesh extraction process,

then the vertical ridges, and their shading artefacts, would be eliminated.

5.3.3 Compaction and Consolidation

As mentioned, sands and soils are a type of fine-grained granular material. Be-

tween the grains of these materials are void spaces, referred to as pores, that are

filled with quantities of air and water [6]. When a sand or soil-filled landscape is

struck by a rigid object or body, the air and water in these pores are released and

the soil is compacted and consolidated. As mentioned in Section 4.3, Sumner et al.

and Holz et al. proposed heightfield-based methods for simulating the compaction

of sand and soil-filled landscapes [38, 18]. In their approaches, impressions, such

as footprints and tire tracks, are created on the surfaces of virtual landscapes as

a result of impacts caused by rigid objects and characters. In our approach, we

do not model the compaction of sands and soils based on these types of impacts.

In the future, a method could be devised to facilitate the compaction and consoli-

dation of the soils in our proposed voxel-based simulation. This method might be
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adapted from the methods of Sumner et al. [38] and Holz et al. [18], or it might

be a novel approach.

5.3.4 Moisture Content

The shear strength of a body of soil is affected by its moisture content, which

is the amount of water contained in the pores of its material [6, 9]. For example,

grains of sand have a greater tendency to stick together and interlock when they

are wet. Therefore, wet sands are less prone to soil slippage and have a higher

angle of repose than dry sands. To enhance the approach described in this thesis,

a method could be devised to simulate bodies of voxel-based soil with varying

moisture contents. One possible approach is to use a 3D property field, similar

to the density, velocity, and force fields, to record the moisture content of the soil

in each voxel of the grid. Based on values in this field, the coefficient of cohesion

associated with the soil in a voxel could be altered to account for the increase

or decrease in shear strength. Also, the surface of the soil could be darkened

and increased in specularity in proportion to the moisture content, such that the

rendered surface appears to be wet when the moisture content is high.
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